Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027304    DOI: 10.1088/1674-1056/26/2/027304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancement of subgap conductance in a graphene superconductor junction by valley polarization

Chuan-Xin Li(李传新)1, Sa-Ke Wang(汪萨克)2, Jun Wang(汪军)2
1 College of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China;
2 Department of Physics, Southeast University, Nanjing 210096, China
Abstract  We theoretically study the differential conductance of a graphene/graphene superconductor junction, where the valley polarization of Dirac electrons is considered in the nonsuperconducting region. It is shown that the subgap conductance will increase monotonically with the valley-polarization strength when the chemical potential μ is near the Dirac point μ≤3Δ (Δ is the superconducting gap), whereas it will decrease monotonically when μ is far away from the Dirac point, μ≥5Δ. The former case is induced by the specular Andreev reflection while the retro-reflection accounts for the later result. Our findings may shed light on the control of conductance of a graphene superconductor junction by valley polarization.
Keywords:  graphene      valley polarization      subgap conductance      specular Andreev reflection  
Received:  28 April 2016      Revised:  31 October 2016      Accepted manuscript online: 
PACS:  73.40.Gk (Tunneling)  
  73.23.Ad (Ballistic transport)  
  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274059 and 11074233).
Corresponding Authors:  Jun Wang     E-mail:  jwang@seu.edu.cn

Cite this article: 

Chuan-Xin Li(李传新), Sa-Ke Wang(汪萨克), Jun Wang(汪军) Enhancement of subgap conductance in a graphene superconductor junction by valley polarization 2017 Chin. Phys. B 26 027304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Sun L F, Fang C and Liang T X 2013 Chin. Phys. B 23 047201
[3] A L C Pereira and P A Schulz 2008 Phys. Rev. B 77 075416
[4] Deng W Y, Zhu R, Xiao Y C, Deng W J 2014 Chin. Phys. B 23 017202
[5] Yokoyama T, Linder J and Sudbo A 2008 Phys. Rev. B 77 132503
[6] G Tkachov 2009 Phys. Rev. B 79 045429
[7] Wang S K, Tian H Y, Yang Y H and Wang J 2014 Chin. Phys. B 23 017203
[8] Ezawa M 2012 Phys. Rev. Lett. 109 055502
[9] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[10] Guo H H, Yang T, Tao P and Zhang Z D 2014 Chin. Phys. B 23 017201
[11] Kioseglou G, Hanbicki A T, Currie M, Friedman A L, Gunlycke D and Jonker B T 2012 Appl. Phys. Lett. 101 221907
[12] Huard B, Scupizio J A, Stander N, Todd K and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[13] Stander N, Huard B and Goldhaber-Gordon D 2009 Phys. Rev. Lett. 102 026807
[14] Heersche H B, Jarillo-Herrero P, Oestinga J B, Vandersypen L M K and Morpurgo A F 2007 Eur. Phys. J. 148 27
[15] Tikhonenko F V, Horsell D W, Gorbachev R V and Savchenko A k 2008 Phys. Rev. Lett. 100 056802
[16] Heersche H B, Jarillo-Herrero P, Oostinga J B, Vandersypen L M K and Morpurgo A F 2007 Nature 446 56
[17] Rycerz A, Tworzydlo J and Beenakker C W J 2006 arXiv: cond-mat/0608533v2 [cond-mat. mes-hall]
[18] Feng Z 2012 Phys. Rev. B 85 155415
[19] Wang J, Yang Y H and Chan K S 2014 Phys. Rev. B 89 064501
[20] Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405
[21] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[22] Asano Y, Yoshida T, Tanaka Y and Golubov A A 2008 Phys. Rev. B 78 014514
[23] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[24] Takashina K, Niida Y, Renard V T, Piot B A, Tregurtha S D, Fujiwara A and Hirayama Y 2013 Phys. Rev. B 88 201301
[25] Akhmerov A R and Beenakker C W J 2007 Phys. Rev. Lett. 98 157003
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!