Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 074702    DOI: 10.1088/1674-1056/ad39c9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid

Jackson Pame and Lenin S. Shagolsem†
Department of Physics, National Institute of Technology Manipur, Imphal, India
Abstract  We study the effect of particle size polydispersity ($\delta$) on the melting transition ($T^*$), local ordering, solid-liquid coexistence phase and dynamics of two-dimensional Lennard-Jones fluids up to moderate polydispersity by means of computer simulations. The particle sizes are drawn at random from the Gaussian (G) and uniform (U) distribution functions. For these systems, we further consider two different kinds of particles, viz., particles having the same mass irrespective of size, and in the other case the mass of the particle scales with its size. It is observed that with increasing polydispersity, the value of $T^\ast$ initially increases due to improved packing efficiency ($\phi$) followed by a decrease and terminates at $\delta\approx 8%$ (U-system) and $14%$ (G-system) with no significant difference for both mass types. The interesting observation is that the particular value at which $\phi$ drops suddenly coincides with the peak of the heat capacity $(C_{P})$ curve, indicating a transition. The quantification of local particle ordering through the hexatic order parameter ($Q_6$), Voronoi construction and pair correlation function reveals that the ordering decreases with increasing $\delta$ and $T$. Furthermore, the solid-liquid coexistence region for the G-system is shown to be comparatively wider in the $T$-$\delta$ plane phase diagram than that for the U system. Finally, the study of dynamics reveals that polydisperse systems relax faster compared to monodisperse systems; however, no significant qualitative differences, depending on the distribution type and mass polydispersity, are observed.
Keywords:  polydispersity      ordering      phase diagram      dynamics  
Received:  25 January 2024      Revised:  24 March 2024      Accepted manuscript online:  03 April 2024
PACS:  47.57.-s (Complex fluids and colloidal systems)  
  87.10.Tf (Molecular dynamics simulation)  
  83.10.Rs (Computer simulation of molecular and particle dynamics)  
  87.15.Zg (Phase transitions)  
Fund: JP acknowledges NFST fellowship (Award No. 201920- NFST-NAG-02957).
Corresponding Authors:  Lenin S. Shagolsem     E-mail:  slenin2001@gmail.com

Cite this article: 

Jackson Pame and Lenin S. Shagolsem Effect of distribution shape on the melting transition, local ordering, and dynamics in a model size-polydisperse two-dimensional fluid 2024 Chin. Phys. B 33 074702

[1] Adachi Y, Fijihara I, Takamiya M and Nakanishi K 1988 Fluid Phase Equilibria 39 1
[2] Galliéro G, Boned C and Baylaucq A 2005 Ind. Amp. Eng. Chem. Res. 44 6963
[3] Galliéro G, Boned C and Fern ández J 2011 J. Chem. Phys. 134 064505
[4] Bohn M, Lustig R and Fischer J 1986 Fluid Ph. Equilibr. 25 251
[5] Barker J A, Henderson D and Abraham F F 1981 Physica A 106 226
[6] Nasrabad A E, Laghaei R and Deiters U K 2004 J. Chem. Phys. 121 6423
[7] Fasolo M and Sollich P 2003 Phys. Rev. Lett. 91 068301
[8] Pagonabarraga I, Cates M E and Ackland G J 2000 Phys. Rev. Lett. 84 911
[9] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[10] Kosterlitz J M and Thouless D J 1972 J. Phys. C: Solid State Phys. 5 L124
[11] Nelson D R and Halperin B I 1979 Phys. Rev. B 19 2457
[12] Halperin B I and Nelson D R 1978 Phys. Rev. Lett. 41 121
[13] Frenkel D and McTague J P 1979 Phys. Rev. Lett. 42 1632
[14] Wierschem K and Manousakis E 2011 Phys. Rev. B 83 214108
[15] Evans R M L 1999 Phys. Rev. E 59 3192
[16] Ingebrigtsen T S and Tanaka H 2016 J. Phys. Chem. B 120 7704
[17] Ingebrigtsen T S and Tanaka H 2015 J. Phys. Chem. B 119 11052
[18] Wilding N B, Sollich P, Fasolo M and Buzzacchi M 2006 J. Chem. Phys. 125 014908
[19] Shagolsem L S, Osmanovi′c D, Peleg O and Rabin Y 2015 J. Chem. Phys. 142 051104
[20] Shagolsem L S and Rabin Y 2016 J. Chem. Phys. 144 194504
[21] Eastwood A R 1981 J. Chem. Soc., Faraday Trans. 77 1411
[22] Murarka R K and Bagchi B 2003 Phys. Rev. E 67 051504
[23] Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241
[24] Bengtzelius U, Gotze W and Sjolander A 1984 J. Phys. C: Solid State Phys. 17 5915
[25] Ingebrigtsen T S and Dyre J C 2023 J. Phys. Chem. B 127 2837
[26] Patashinski A Z, Ratner M A, Grzybowski B A, Orlik R and Mitus A C 2012 J. Phys. Chem. Lett. 3 2431
[27] Patashinski A Z, Orlik R, Mitus A C, Grzybowski B A and Ratner M A 2010 J. Phys. Chem. C 114 20749
[28] Salacuse J J and Stell G 1982 J. Chem. Phys. 77 3714
[29] Sollich P and Cates M E 1998 Phys. Rev. Lett. 80 1365
[30] Warren P B 1998 Phys. Rev. Lett. 80 1369
[31] Reichhardt C O and Reichhardt C 2003 J. Phys. A: Math. Gen. 36 5841
[32] Reichhardt C and Reichhardt C O 2005 Phys. Rev. E 71 062403
[33] Chen J X, Yuan R, Cui R and Qiao L 2021 Nanoscale 13 1055
[34] Ruiz P S, Lei Q L and Ni R 2019 Commun. Phys. 2 70
[35] Pal, Sayan, et al. 2023 Chemical Engineering Journal 462 142007
[36] Horta-Pineres, S, et al. 2020 Appl. Phys. A 126 1
[37] Phongtongpasuk, Siriporn, Sarinya Poadang and Niti Yongvanich 2016 Energy Procedia 89 239
[38] Singh, Priyanka, et al. 2016 Artificial cells, nanomedicine and biotechnology 44 1569
[39] Pigolotti S, Lopez C, Hernández-García E and Andersen K H 2010 Theoretical Ecology 3 89
[40] Lai C D, Murthy D N and Xie M 2006 Springer Handbooks pp. 63-78 (Springer)
[41] Matsumura Y and Jackson T L 2014 Phys. Fluids 26 123302
[42] Wilding N B and Sollich P 2010 J. Chem. Phys. 133 224102
[43] Sarkar S, Biswas R, Santra M and Bagchi B 2013 Phys. Rev. E 88 022104
[44] Pame J and Shagolsem L S 2021 Macromol. Symp. 399 2100037
[45] Allen M P and Tildesley D J 2017 Computer simulation of liquids, Oxford University Press
[46] Frenkel D and Smit B 2001 Understanding Molecular Simulation: From Algorithms to Applications (Cambridge: Academic Press)
[47] Plimpton S 1995 J. Comput. Phys. 117 1
[48] Urikhinbam S S and Shagolsem L S 2023 J. Phys. Chem. B 127 2739
[49] Pusey P N 1987 J. Phys. 48 709
[50] Barrat J L and Hansen J P 1986 J. Phys. 47 1547
[51] McRae R and Haymet A D J 1988 J. Chem. Phys. 88 1114
[52] Dickinson E, Parker R and Lal M 1981 Chem. Phys. Lett 79 578
[53] Dickinson E and Parker R 1985 J. Physique, Lett. 46 229
[54] Bolhuis P G and Kofke D A 1996 Phys. Rev. E 54 634
[55] Dullens R P and Kegel W K 2004 Phys. Rev. Lett. 92 195702
[56] Kofke D A and Bolhuis P G 1999 Phys. Rev. E 59 618
[57] Abraham S E, Bhattacharrya S M and Bagchi B 2008 Phys. Rev. Lett. 100 167801
[58] Volkel S and Huang K 2020 In Traffic and Granular Flow, 2019 pp. 429-437, Springer International Publishing
[59] Meitei T P and Shagolsem L S 2024 Pramana 98 1
[1] Preparation of entangled W states based on the cavity QED system
Ke Li(李可) and Jun-Long Zhao(赵军龙). Chin. Phys. B, 2024, 33(9): 090306.
[2] Phase diagram and quench dynamics of a periodically driven Haldane model
Minxuan Ren(任民烜), Han Yang(杨焓), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(9): 090309.
[3] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[4] Non-perturbative dynamics of flat-band systems with correlated disorder
Qi Li(李骐), Junfeng Liu(刘军丰), Ke Liu(刘克), Zi-Xiang Hu(胡自翔), and Zhou Li(李舟). Chin. Phys. B, 2024, 33(9): 097203.
[5] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[6] Quasi-three-dimensional hydrodynamics of the corona region of laser irradiation of a slab
Xiao-Mei Dong(董晓梅), Ben-Jin Guan(关本金), and Ying-Jun Li(李英骏). Chin. Phys. B, 2024, 33(8): 085203.
[7] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[8] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[9] RKKY interaction in helical higher-order topological insulators
Sha Jin(金莎), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2024, 33(7): 077503.
[10] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[11] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[12] Comprehensive study of the ultrafast photoexcited carrier dynamics in Sb2Te3-GeTe superlattices
Zhijiang Ye(叶之江), Zuanming Jin(金钻明), Yexin Jiang(蒋叶昕), Qi Lu(卢琦), Menghui Jia(贾梦辉), Dong Qian(钱冬), Xiamin Huang(黄夏敏), Zhou Li(李舟), Yan Peng(彭滟), and Yiming Zhu(朱亦鸣). Chin. Phys. B, 2024, 33(7): 074210.
[13] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[14] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[15] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
No Suggested Reading articles found!