|
|
Structural color of metallic glass through picosecond laser |
Yue'e Zhang(张月娥)1,2, Xing Tong(童星)2,†, Yuqiang Yan(闫玉强)2, Shuo Cao(曹硕)1, Hai-Bo Ke(柯海波)2,‡, and Wei-Hua Wang(汪卫华)1,2,3 |
1 College of Physics, Liaoning University, Shenyang 110036, China; 2 Songshan Lake Materials Laboratory, Dongguan 523808, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The alteration in surface color of metallic glasses (MGs) holds great significance in the context of microstructure design and commercial utility. It is essential to accurately describe the structures that are formed during the laser and color separation processes in order to develop practical laser coloring applications. Due to the high oxidation sensitivity of La-based metallic glass, it can broaden the color range but make it more complex. Structure coloring by laser processing on the surface of La-based metallic glass can be conducted after thermoplastic forming. It is particularly important to clarify the role of structure and composition in the surface coloring process. The aim is to study the relationship between amorphous surface structural color, surface geometry, and oxide formation by laser processing in metallic glasses. The findings revealed that the periodic structure primarily determines the surface color at laser energy densities below 1.0 J/mm$^{2}$. In contrast, the surface color predominantly depends on the proportion of oxides that are formed when energy densities exceed 1.0 J/mm$^{2}$. Consequently, this study provides a novel concept for the fundamental investigation of laser coloring and establishes a new avenue for practical application.
|
Received: 24 July 2024
Revised: 27 August 2024
Accepted manuscript online: 03 September 2024
|
PACS:
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
81.40.Tv
|
(Optical and dielectric properties related to treatment conditions)
|
|
81.16.Rf
|
(Micro- and nanoscale pattern formation)
|
|
81.65.Mq
|
(Oxidation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52071222 and 52471180), Guangdong Major Project of Basic and Applied Basic Research, China (Grant No. 2019B030302010), Guangdong Basic and Applied Basic Research, China (Grant No. 2020B1515130007), the National Key Research and Development Program of China (Grant No. 2021YFA0716302), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000). |
Corresponding Authors:
Xing Tong, Hai-Bo Ke
E-mail: tongxing@sslab.org.cn;kehaibo@sslab.org.cn
|
Cite this article:
Yue'e Zhang(张月娥), Xing Tong(童星), Yuqiang Yan(闫玉强), Shuo Cao(曹硕), Hai-Bo Ke(柯海波), and Wei-Hua Wang(汪卫华) Structural color of metallic glass through picosecond laser 2024 Chin. Phys. B 33 108104
|
[1] Yu H, Zhao L N, Bo M S, Xu D S and Jia L C 2023 Rare Met. 42 844 [2] Liu Y N, Ding Y, Yang L J, Sun R L, Zhang T G and Yang X J 2021 J. Manuf. Processes. 66 341 [3] Antończak A, Stepak B, KoziołP and Abramski K 2013 Appl. Phys. A 115 1003 [4] Qi S, Jian Z Z, Xian K M, Jia N Y, Zhao H G, Ming Z and Shun G 2022 Rare Met. 41 1022 [5] Hedayati K and Elbahri M 2016 Plasmonics 12 1463 [6] Gu Y H, Zhang L, Yang J K, Yeo S P and Qiu C W 2015 Nanoscale 7 6409 [7] Kristensen A, Yang J, Bozhevolnyi S, Link S, Nordlander P, Halas N and Mortensen N 2017 Nat. Rev. Mater. 2 16088 [8] Ma Y Q, Shao J H, Zhang Y F, Lu B R, Zhang S C, Sun Y, Qu X P and Chen Y F 2015 Chin. Phys. B 24 080702 [9] Camilo F, Kirner S, Krüger J and Bonse J 2020 J. Laser Appl. 32 022063 [10] Florian C, Skoulas E, Puerto D, Mimidis A, Stratakis E, Solis J and Siegel J 2018 ACS Appl. Mater. Interfaces 10 36564 [11] Lutey A, Gemini L, Romoli L, Lazzini G, Fuso F, Faucon M and Kling R 2018 Sci. Rep. 8 10112 [12] Martínez-Calderon M, Manso-Silván M, Rodr íguez A, Gómez-Aranzadi M, García-Ruiz J, Olaizola S and Martín-Palma R 2016 Sci. Rep. 6 36296 [13] McDaniel C, Gladkovskaya O, Flanagan A and Rochev Y 2015 RSC Adv. 5 42548 [14] Stratakisa E, Bonsec J, Heitzd J, Siegele J, Tsibidisa G and Skoulasa E 2020 Mat. Sci. Eng. R 141 100562 [15] Zhi H F, Xin Y S, Peng B H, Hang F, Hui C D, Shun G, Ru S and Jian H L 2020 Rare Met. 39 270 [16] Sun X D, Hui W Y, Cheng Y Z, Jing Z, Shi Y and Pan L J 2023 Rare Met. 42 3304 [17] Guay J, Cala L, Cote G, Charron M, Poitras D, Ramunno L, Berini P and Weck A 2017 Nat. Commun. 8 16095 [18] Shi X Y, Huang Z J, Laakso M, Niklaus F, Sliz R, Fabritius T, Somani M, Nyo T, Wang X, Zhang M, Wang G, Kömi J, Huttula M and Cao W 2019 Appl. Surf. Sci. 484 655 [19] Ahmed M F, Kim Y, Lee M and Jun M 2011 Appl. Surf. Sci. 257 7771 [20] Yao J W, Zhang C Y, Liu H Y, Dai Q F, Wu L J, Lan S, Gopal A, Trofimov V and Lysak T 2012 Appl. Surf. Sci. 258 7625 [21] Li G Q, Li W, Hu Y L, Zhang C C, Li X H, Chu J and Huang W H 2014 Appl. Surf. Sci. 316 451 [22] Ahsan M and Lee M 2013 Optik 124 3631 [23] Höhm S, Herzlieb M, Rosenfeld A, Krüger J and Bonse J 2015 Appl. Surf. Sci. 336 39 [24] Wang C, Lin X, Schafer C, Hirsemann S and Ge J P 2020 Adv. Funct. Mater. 31 2008601 [25] Zhou L W, Yang L L, Liu Y, Xu Z, Yin J, Ge D T and Jiang X S 2020 Adv. Opt. Mater. 8 2000234 [26] Long J Y, Fan P X, Zhong M L, Zhang H J, Xie Y D and Lin C 2014 Appl. Surf. Sci. 311 461 [27] Palmieri F, Ledesma R, Dennie J, Krame T, Lin Y, Hopkins J, Wohl C and Connell J 2019 Compos. Part B-Eng. 175 107155 [28] Huang Y D, Zhang C Y, Zhang C C, Li G, Chen Q and Song C 2022 J. Manuf. Processes 76 304 [29] Pauna H, Shi X Y, Huttula M, Kokkonen E, Li T, Luo Y, Lappalainen J, Zhang M and Cao W 2017 Appl. Phys. Lett. 111 103901 [30] Xiong Y, He T T, Lu Y, Bao H S, Li Y, Ren F Z, Cao W and Volinsky A 2018 J. Iron. Steel Res. Int. 25 469 [31] Wu G, Liu S D, Wang Q, Rao J, Xia W Z, Yan Y Q, Eckert J, Liu C, Ma E and Shan Z W 2023 Nat. Commun. 14 3670 [32] Ashby M and Greer A 2006 Scr. Mater. 54 321 [33] Chen F C, Dai F P, Yang X Y, Ruan Y and Wei B B 2020 Chin. Phys. B 29 066401 [34] Bu Y, Bai X M, Lyu F C, Liu G, Wu G, Pan L L, Cheng L Z, Ho J and Lu J 2020 Adv. Opt. Mater. 8 1901626 [35] Yang C, Zhang C nand Liu L 2017 J. Alloys Compd. 728 289 [36] Na J, Han K, Garrett G, Launey M, Demetriou M and Johnson W 2019 Sci. Rep. 9 3269 [37] Wang J Z, Zhang P L, Shen L, Yu Z S, Shi H C and Tian Y T 2021 J. Manuf. Processes 69 613 [38] Hong J, Qian Y F, L Zhang, Huang H, Jiang M Q and Yan J W 2021 Surf. Coat. Tech. 424 127657 [39] Qian Y F, Huang H, Jiang M Q and Yan J W 2021 Appl. Surf. Sci. 577 151976 [40] Shaw M and Fairchild M 2002 Color Res. Appl. 27 316 [41] Glonek G and McCullagh P 1995 J. R. Stat. Soc. 57 533 [42] Ciapurin I, Drachenberg D, Smirnov V, Venus G and Glebov L 2012 Opt. Eng. 51 058001 [43] Wang K X, Feng S M, Xu H T, Tian J D and Pei J 2012 Acta Opt. Sin. 32 324001 [44] Yao S S, Wang Y Q, Liang Y Z, Yu H L, Majeed A, Shen X Q, Li T B and Qin S B 2021 Ceram. Int. 47 27012 [45] Zhao Z H, Liu J L, Qin M, Kou K C, Wu G L and Wu H J 2020 J. Nanosci. Nanotechnol. 20 3140 [46] Cañón J and Teplyakov A 2021 Surf. Interface Anal. 53 475 [47] Prajapati J, Das D, Katlakunta S, Maramu N, Ranjan V and Mallick S 2021 Inorg. Chim. Acta 515 120069 [48] Sudha V, Murugadoss G and Thangamuthu R 2021 Sci. Rep. 11 3413 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|