CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields |
Lvjin Wang(王侣锦)1,2,†, Cong Wang(王聪)1,2,†, Linwei Zhou(周霖蔚)1,2, Xieyu Zhou(周谐宇)1,2, Yuhao Pan(潘宇浩)1,2, Xing Wu(吴幸)3,‡, and Wei Ji(季威)1,2,§ |
1 Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 In Situ Devices Center, School of Integrated Circuits, East China Normal University, Shanghai 200241, China |
|
|
Abstract Hafnia-based ferroelectric materials, like Hf$_{0.5}$Zr$_{0.5}$O$_{2}$ (HZO), have received tremendous attention owing to their potentials for building ultra-thin ferroelectric devices. The orthorhombic(O)-phase of HZO is ferroelectric but metastable in its bulk form under ambient conditions, which poses a considerable challenge to maintaining the operation performance of HZO-based ferroelectric devices. Here, we theoretically addressed this issue that provides parameter spaces for stabilizing the O-phase of HZO thin-films under various conditions. Three mechanisms were found to be capable of lowering the relative energy of the O-phase, namely, more significant surface-bulk portion of (111) surfaces, compressive $c$-axis strain, and positive electric fields. Considering these mechanisms, we plotted two ternary phase diagrams for HZO thin-films where the strain was applied along the in-plane uniaxial and biaxial, respectively. These diagrams indicate the O-phase could be stabilized by solely shrinking the film-thickness below 12.26 nm, ascribed to its lower surface energies. All these results shed considerable light on designing more robust and higher-performance ferroelectric devices.
|
Received: 25 January 2024
Revised: 18 April 2024
Accepted manuscript online: 10 May 2024
|
PACS:
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
77.80.-e
|
(Ferroelectricity and antiferroelectricity)
|
|
85.50.-n
|
(Dielectric, ferroelectric, and piezoelectric devices)
|
|
Fund: Project supported by the Fund from the Ministry of Science and Technology (MOST) of China (Grant No. 2018YFE0202700), the National Natural Science Foundation of China (Grant Nos. 11974422 and 12104504), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 22XNKJ30). |
Corresponding Authors:
Xing Wu, Wei Ji
E-mail: xwu@cee.ecnu.edu.cn;wji@ruc.edu.cn
|
Cite this article:
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威) Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields 2024 Chin. Phys. B 33 076803
|
[1] Zhang B, Meng K K, Yang M Y, Edmonds K W, Zhang H, Cai K M, Sheng Y, Zhang N, Ji Y and Zhao J H 2016 Sci. Rep. 6 28458 [2] Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, Edmonds K W, Sheng Y, Zhang B and Zhang N 2017 Nat. Mater. 16 712 [3] Mikolajick T, Slesazeck S, Park M H and Schroeder U 2018 MRS Bull. 43 340 [4] Schroeder U, Park M H, Mikolajick T and Hwang C S 2022 Nat. Rev. Mater. 7 653 [5] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Müller J, Kersch A, Schroeder U, Mikolajick T and Hwang C S 2015 Adv. Mater. 27 1811 [6] Yu H, Chung C C, Shewmon N, Ho S, Carpenter J H, Larrabee R, Sun T, Jones J L, Ade H, O’Connor B T and So F 2017 Adv. Funct. Mater. 27 1700461 [7] Si M, Saha A K, Gao S, Qiu G, Qin J, Duan Y, Jian J, Niu C, Wang H, Wu W, Gupta S K and Ye P D 2019 Nat. Electron. 2 580 [8] Chen H, Zhou X, Tang L, Chen Y, Luo H, Yuan X, Bowen C R and Zhang D 2022 Appl. Phys. Rev. 9 011307 [9] Shiraishi T, Katayama K, Yokouchi T, Shimizu T, Oikawa T, Sakata O, Uchida H, Imai Y, Kiguchi T, Konno T J and Funakubo H 2016 Appl. Phys. Lett. 108 262904 [10] Sakashita Y, Segawa H, Tominaga K and Okada M 1993 J. Appl. Phys. 73 7857 [11] Mehta R R, Silverman B D and Jacobs J T 1973 J. Appl. Phys. 44 3379 [12] Li Y, Liang R, Wang J, Zhang Y, Tian H, Liu H, Li S, Mao W, Pang Y, Li Y, Yang Y and Ren T L 2017 IEEE J. Electron. Dev. Soc. 5 378 [13] Cheema S S, Shanker N, Hsu S L, Rho Y, Hsu C H, Stoica V A, Zhang Z, Freeland J W, Shafer P, Grigoropoulos C P, Ciston J and Salahuddin S 2022 Science 376 648 [14] Müller J, Böscke T S, Schr öder U, Mueller S, Bräuhaus D, Böttger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318 [15] Kim H J, Park M H, Kim Y J, Lee Y H, Jeon W, Gwon T, Moon T, Kim K D and Hwang C S 2014 Appl. Phys. Lett. 105 192903 [16] Wang Y, Tao L, Guzman R, Luo Q, Zhou W, Yang Y, Wei Y, Liu Y, Jiang P, Chen Y, Lv S, Ding Y, Wei W, Gong T, Wang Y, Liu Q, Du S and Liu M 2023 Science 381 558 [17] Kumar A, Mondal S and Koteswara Rao K S R 2017 J. Appl. Phys. 121 085301 [18] Zhang B, Li C, Hong P and Huo Z 2021 Appl. Phys. Lett. 119 022405 [19] Ruh R and Corfield P W R 1970 J. Amer. Ceram. Soc. 53 126 [20] Materlik R, Künneth C and Kersch A 2015 J. Appl. Phys. 17 134109 [21] Curtis C E, Doney L M and Johnson J R 1954 J. Amer. Ceram. Soc. 37 458 [22] Ruh R and Patel V A 1973 J. Amer. Ceram. Soc. 56 606 [23] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Müller J, Kersch A, Schroeder U, Mikolajick T and Hwang C S 2015 Adv. Mater. 27 1811 [24] Leger J M, Atouf A, Tomaszewski P E and Pereira A S 1993 Phys. Rev. B 48 93 [25] Ohtaka O, Fukui H, Kunisada T, Fujisawa T, Funakoshi K, Utsumi W, Irifune T, Kuroda K and Kikegawa T 2001 J. Amer. Ceram. Soc. 84 1369 [26] Boscke T S, Müller J, Bräuhaus D, Schröder U and Böttger U 2011 Appl. Phys. Lett. 99 102903 [27] Park M H, Lee Y H, Kim H J, Kim Y J, Moon T, Kim K D, Hyun S D and Hwang C S 2018 ACS Appl. Mater. Interfaces 10 42666 [28] Luo C, Yu Z, Ning H, Dong Z, Wang C, Sun L, Wu X, Wang X and Chu J 2022 Appl. Phys. Lett. 120 232107 [29] Lederer M, Kämpfe T, Olivo R, Lehninger D, Mart C, Kirbach S, Ali T, Polakowski P, Roy L and Seidel K 2019 Appl. Phys. Lett. 115 222902 [30] Batra R, Huan T D, Jones J L, Rossetti G and Ramprasad R 2017 J. Phys. Chem. C 121 4139 [31] Lai B, Wang Y, Shao Y, Deng Y, Yang W, Jiang L and Zhang Y 2021 J. Phys.: Condens. Matter 33 405402 [32] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412 [33] Mueller S, Adelmann C, Singh A, Elshocht S V, Schroeder U and Mikolajick T 2012 ECS J. Solid State Sci. Technol. 1 N123 [34] Lomenzo P D, Takmeel Q, Zhou C, Chung C C, Moghaddam S, Jones J L and Nishida T 2015 Appl. Phys. Lett. 107 242903 [35] Chen L, Zhang X, Feng G, Liu Y, Hao S, Zhu Q, Feng X, Qu K, Yang Z and Qi Y 2023 Chin. Phys. B 32 108102 [36] Tromm T C U, Zhang J, Schubert J, Luysberg M, Zander W, Han Q, Meuffels P, Meertens D, Glass S, Bernardy P and Mantl S 2017 Appl. Phys. Lett. 111 142904 [37] Bouaziz J, Rojo Romeo P, Baboux N, Negrea R, Pintilie L and Vilquin B 2019 APL Mater. 7 081109 [38] Schroeder U, Mittmann T, Materano M, Lomenzo P D, Edgington P, Lee Y H, Alotaibi M, West A R, Mikolajick T, Kersch A and Jones J L 2022 Adv. Electr. Mater. 8 2200265 [39] Torrejón L, Langenberg E, Magén C, Larrea A, Blasco J, Santiso J, Álgarabel P A and Pardo J A 2018 Phys. Rev. Mater. 2 013401 [40] Schroeder U, Yurchuk E, Müller J, Martin D, Schenk T, Polakowski P, Adelmann C, Popovici M I, Kalinin S V and Mikolajick T 2014 Jpn. J. Appl. Phys. 53 08LE02 [41] Müller J, Böscke T S, M üller S, Yurchuk E, Polakowski P, Paul J, Martin D, Schenk T, Khullar K, Kersch A, Weinreich W, Riedel S, Seidel K, Kumar A, Arruda T M, Kalinin S V, Schlösser T and Mikolajick T 2013 IEEE International Electron Device Meeting 2013 p. 10.8.1-10.8.4 [42] Cockayne E 2007 Phys. Rev. B 75 094103 [43] Zhou Y, Zhang Y K, Yang Q, Jiang J, Fan P, Liao M and Zhou Y C 2019 Comput. Mater. Sci. 167 143 [44] Nukala P, Ahmadi M, Wei Y, de Graaf S, Stylianidis E, Chakrabortty T, Matzen S, Zandbergen H W, Björling A, Mannix D, Carbone D, Kooi B and Noheda B 2021 Science 372 630 [45] Muller J, Schröder U, Büscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kücher P, Mikolajick T and Frey L 2011 J. Appl. Phys. 110 114113 [46] Hyuk Park M, Joon Kim H, Jin Kim Y, Moon T and Seong Hwang C 2014 Appl. Phys. Lett. 104 072901 [47] Park M H, Kim H J, Kim Y J, Lee W, Moon T, Kim K D and Hwang C S 2014 Appl. Phys. Lett. 105 072902 [48] Park M H, Kim H J, Kim Y J, Jeon W, Moon T and Hwang C S 2014 Phys. Status Solidi (RRL)-Rapid Research Lett. 8 532 [49] Schroeder U, Richter C, Park M H, Schenk T, Peǎić M, Hoffmann M, Fengler F P G, Pohl D, Rellinghaus B, Zhou C, Chung C C, Jones J L and Mikolajick T 2018 Inorg. Chem. 57 2752 [50] Huo S, Zheng J, Liu Y, Li Y, Tao R, Lu X and Liu J 2023 Chin. Phys. B 32 127701 [51] Zhou D, Xu J, Li Q, Guan Y, Cao F, Dong X, Müller J, Schenk T and Schröder U 2013 Appl. Phys. Lett. 103 192904 [52] Kim H J, Park M H, Kim Y J, Lee Y H, Moon T, Kim K D, Hyun S D and Hwang C S 2016 Nanoscale 8 1383 [53] Grimley E D, Schenk T, Sang X, Pešić M, Schroeder U, Mikolajick T and LeBeau J M 2016 Adv. Electron. Mater. 2 1600173 [54] Pešić M, Fengler F P G, Larcher L, Padovani A, Schenk T, Grimley E D, Sang X, LeBeau J M, Slesazeck S, Schroeder U and Mikolajick T 2016 Adv. Funct. Mater. 26 4601 [55] Teng C Y, Cheng C C, Li K S, Hu C, Lin J M, Lin B H, Tang M T and Tseng Y C 2023 ACS Appl. Electron. Mater. 5 1114 [56] Hyuk Park M, Joon Kim H, Jin Kim Y, Lee W, Moon T and Seong Hwang C 2013 Appl. Phys. Lett. 102 242905 [57] Chen W C, Tan Y F, Lin S K, Zhang Y C, Chang K C, Lin Y H, Yeh C H, Wu C W, Yeh Y H, Wang K Y, Huang H C, Tsai T M, Huang J W and Chang T C 2021 IEEE Trans. Electron Dev. 68 3838 [58] Tao X, Liu L, Yang L and Xu J P 2021 Nanotechnology 32 445201 [59] Wang D, Zhang Y, Guo Y, Shang Z Fu F and Lu X 2023 Chin. Phys. B 32 097701 [60] Ihlefeld J F, Jaszewski S T and Fields S S 2022 Appl. Phys. Lett. 121 240502 [61] Blöchl P E 1994 Phys. Rev. B 50 17953 [62] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [63] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [64] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [65] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 [66] Klimeš J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131 [67] Qiao J, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475 [68] Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J and Zhang Z 2015 Nat. Commun. 6 6293 [69] Qiao J, Pan Y, Yang F, Wang C, Chai Y and Ji W 2018 Sci. Bull. 63 159 [70] Hu Z X, Kong X, Qiao J, Normand B and Ji W 2016 Nanoscale 8 2740 [71] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau SP, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399 [72] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112 [73] Baroni S and Resta R 1986 Phys. Rev. B 33 7017 [74] Tanner D S P, Janolin P E and Bousquet E 2022 Phys. Rev. B 106 L060102 [75] Resta R and Vanderbilt D 2007 Physics of Ferroelectrics (Berlin, Heidelberg: Springer) pp. 31-68 [76] Spaldin N A 2012 J. Solid State Chem. 195 2 [77] King-Smith R D and Vanderbilt D 1993 Phys. Rev. B 47 1651 [78] Mukhopadhyay A B, Sanz J F and Musgrave C B 2006 Phys. Rev. B 73 115330 [79] Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067 [80] Zhang K, Wang C, Zhang M, Bai Z, Xie F F, Tan Y Z, Guo Y, Hu K J, Cao L, Zhang S, Tu X, Pan D, Kang L, Chen J, Wu P, Wang X, Wang J, Wang B 2020 Nat. Nanotechnol. 15 1019 [81] Chen G H, Hou Z F and Gong X G 2008 Comput. Mater. Sci. 44 46 [82] Yang F, Wang C, Pan Y, Zhou X, Kong X and Ji W 2019 Chin. Phys. B 28 056402 [83] Duerloo K A N, Li Y and Reed E J 2014 Nat. Commun. 5 4214 [84] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y and Duan X 2021 Nat. Mater. 20 818 [85] Huan T D, Sharma V, Rossetti G A and Ramprasad R 2014 Phys. Rev. B 90 064111 [86] Sang X, Grimley E D, Schenk T, Schroeder U and LeBeau J M 2015 Appl. Phys. Lett. 106 162905 [87] Fields S S, Cai T, Jaszewski S T, Salanova A, Mimura T, Heinrich H H, Henry M D, Kelley K P, Sheldon B W and Ihlefeld J F 2022 Adv. Electr. Mater. 8 2200601 [88] Li T, Zhang N, Sun Z, Xie C, Ye M, Mazumdar S, Shu L, Wang Y, Wang D, Chen L, Ke S and Huang H 2018 J. Mater. Chem. C 6 9224 [89] Estandía S, Dix N, Gazquez J, Fina I, Lyu J, Chisholm M F, Fontcuberta J and Sánchez F 2019 ACS Appl. Electron. Mater. 1 1449 [90] Lee Y, Goh Y, Hwang J, Das D and Jeon S 2021 IEEE Trans. Electron Dev. 68 523 [91] Cao R, Wang Y, Zhao S, Yang Y, Zhao X, Wang W, Zhang X, Lv H, Liu Q and Liu M 2018 IEEE Electron Dev. Lett. 39 1207 [92] Hamouda W, Mehmood F, Mikolajick T, Schroeder U, Mentes T O, Locatelli A and Barrett N 2022 Appl. Phys. Lett. 120 202902 [93] Baumgarten L, Szyjka T, Mittmann T, Materano M, Matveyev Y, Schlueter C, Mikolajick T, Schroeder U and Müller M 2021 Appl. Phys. Lett. 118 032903 [94] Resta R 1994 Rev. Mod. Phys. 66 899 [95] Wang X and Vanderbilt D 2007 Phys. Rev. B 75 115116 [96] Souza İ, Iniguez J and Vanderbilt D 2002 Phys. Rev. Lett. 89 117602 [97] Kim S J, Mohan J, Kim H S, Lee J, Young C D, Colombo L, Summerfelt S R, San T and Kim J 2018 Appl. Phys. Lett. 113 182903 [98] Zhang Z, Wang C, Yang Y, Miao X and Wang X 2023 Appl. Phys. Lett. 122 152902 [99] Park M H, Kim H J, Kim Y J, Lee Y H, Moon T, Kim K D, Hyun S D, Fengler F, Schroeder U and Hwang C S 2016 ACS Appl. Mater. Interfaces 8 15466 [100] Chouprik A, Zakharchenko S, Spiridonov M, Zarubin S, Chernikova A, Kirtaev R, Buragohain P, Gruverman A, Zenkevich A and Negrov D 2018 ACS Appl. Mater. Interfaces 10 8818 [101] Yan Y, Zhou D, Guo C, Xu J, Yang X, Liang H, Zhou F, Chu S and Liu X 2016 J. Sol-Gel Sci. Technol. 77 430 [102] Yurchuk E, Müller J, Knebel S, Sundqvist J, Graham A P, Melde T, Schröder U and Mikolajick T 2013 Thin Solid Films 533 88 [103] Zhao Q, Wang T, Miao Y, Ma F, Xie Y, Ma X, Gu Y, Li J, He J, Chen B, Xi S, Xu L, Zhen H, Yin Z, Li J, Ren J and Jie W 2016 Phys. Chem. Chem. Phys. 18 18719 [104] Mani B K, Chang C M, Lisenkov S and Ponomareva I 2015 Phys. Rev. Lett. 115 097601 [105] Liao J, Zeng B, Sun Q, Chen Q, Liao M, Qiu C, Zhang Z and Zhou Y 2019 IEEE Electron Dev. Lett. 40 1868 [106] Park M H, Lee Y H, Mikolajick T, Schroeder U and Hwang C S 2018 MRS Commun. 8 795 [107] Zhao D, Chen Z and Liao X 2022 Microstructures 2 2022007 [108] Fengler F P G, Nigon R, Muralt P, Grimley E D, Sang X, Sessi V, Hentschel R, LeBeau J M, Mikolajick T and Schroeder U 2018 Adv. Electr. Mater. 4 1700547 [109] Grimley E D, Schenk T, Mikolajick T, Schroeder U and LeBeau J M 2018 Adv Mater. Inter. 5 1701258 [110] Cao J, Shi S, Zhu Y and Chen J 2021 Physica Rapid Research Ltrs 15 2100025 [111] Estandía S, Dix N, Chisholm M F, Fina I and Sánchez F 2020 Crystal Growth & Design 20 3801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|