Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
TOPICAL REVIEW—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Selected topics of quantum computing for nuclear physics |
Dan-Bo Zhang(张旦波)1,2, Hongxi Xing(邢宏喜)3,4, Hui Yan(颜辉)1,2, Enke Wang(王恩科)3,4, and Shi-Liang Zhu(朱诗亮)1,2,† |
1 Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China; 2 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China; 3 Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China; 4 Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China |
|
|
Abstract Nuclear physics, whose underling theory is described by quantum gauge field coupled with matter, is fundamentally important and yet is formidably challenge for simulation with classical computers. Quantum computing provides a perhaps transformative approach for studying and understanding nuclear physics. With rapid scaling-up of quantum processors as well as advances on quantum algorithms, the digital quantum simulation approach for simulating quantum gauge fields and nuclear physics has gained lots of attention. In this review, we aim to summarize recent efforts on solving nuclear physics with quantum computers. We first discuss a formulation of nuclear physics in the language of quantum computing. In particular, we review how quantum gauge fields (both Abelian and non-Abelian) and their coupling to matter field can be mapped and studied on a quantum computer. We then introduce related quantum algorithms for solving static properties and real-time evolution for quantum systems, and show their applications for a broad range of problems in nuclear physics, including simulation of lattice gauge field, solving nucleon and nuclear structures, quantum advantage for simulating scattering in quantum field theory, non-equilibrium dynamics, and so on. Finally, a short outlook on future work is given.
|
Received: 29 October 2020
Revised: 05 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
21.60.-n
|
(Nuclear structure models and methods)
|
|
Fund: Project supported by the Key-Area Research and Development Program of GuangDong Province, China (Grant No. 2019B030330001), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2020B0301030008), the National Natural Science Foundation of China (Grant Nos. 12074180, 12005065, 12022512, and 12035007), the Key Project of Science and Technology of Guangzhou (Grant Nos. 201804020055 and 2019050001), and the National Key Research and Development Program of China (Grant No. 2016YFA0301800). |
Corresponding Authors:
†Corresponding author. E-mail: slzhu@nju.edu.cn
|
Cite this article:
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮) Selected topics of quantum computing for nuclear physics 2021 Chin. Phys. B 30 020306
|
1 Peskin M and Schroeder D1995 An introduction to quantum field theory 2 Wilson K G 1974 Phys. Rev. D 10 2445 3 Kogut J and Susskind L 1975 Phys. Rev. 11 395 4 Kogut J B 1983 Rev. Mod. Phys. 55 775 5 McLerran L D and Svetitsky B 1981 Phys. Lett. 98 195 6 Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94 170201 7 Silvi P, Rico E, Calarco T and Montangero S 2014 New J. Phys. 16 103015 8 Tagliacozzo L, Celi A and Lewenstein M 2014 Phys. Rev. X 4 041024 9 Rico E, Pichler T, Dalmonte M, Zoller P and Montangero S 2014 Phys. Rev. Lett. 112 201601 10 K\"uhn S, Zohar E, Cirac J I and Ba\ uls M C 2015 J. High Energy Phys. 2015 130 11 Buyens B, Verstraete F and Van Acoleyen K 2016 Phys. Rev. D 94 085018 12 Ba\ uls M C, Cichy K, Cirac J I, Jansen K and K\"uhn S 2017 Phys. Rev. X 7 041046 13 Silvi P, Sauer Y, Tschirsich F and Montangero S 2019 Phys. Rev. D 100 074512 14 Emonts P and Zohar E 2020 SciPost Phys. Lect. Notes 12 15 Feynman R 1982 Int. J. Theor. Phys. 21 467 16 Lloyd S 1996 Science 273 1073 17 Nielsen M A and Chuang I L2010 Quantum Computation and Quantum Information, 10th Anniversary Edition (Cambridge University Press) 18 Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 309 1704 19 Preskill J 2018 Quantum 2 79 20 Yung M H, Casanova J, Mezzacapo A, McClean J, Lamata L, Aspuru-Guzik A and Solano E 2014 Scientific Reports 4 3589 21 McClean J R, Romero J, Babbush R and Aspuru-Guzik A 2016 New J. Phys. 18 023023 22 O'Malley P J J, Babbush R, Kivlichan I D, Romero J, McClean J R, Barends R, Kelly J, Roushan P, Tranter A, Ding N, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, Quintana C, Sank D, Vainsencher A, Wenner J, White T C, Coveney P V, Love P J, Neven H, Aspuru-Guzik A and Martinis J M 2016 Phys. Rev. X 6 031007 23 Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M and Gambetta J M 2017 Nature 549 242 24 Grimsley H R, Economou S E, Barnes E and Mayhall N J 2019 Nat. Commun. 10 3007 25 Arute F et al.Arute F 2020 Hartree-fock on a superconducting qubit quantum computer (Preprint 2004.04174) 26 Liu J G, Zhang Y H, Wan Y and Wang L 2019 Phys. Rev. Research 1 023025 27 Kokail C, Maier C, van Bijnen R, Brydges T, Joshi M K, Jurcevic P, Muschik C A, Silvi P, Blatt R, Roos C F and Zoller P 2019 Nature 569 355 28 Dallaire-Demers P L, Stchy M, Gonthier J F, Bashige N T, Romero J and Cao Y 2020 An application benchmark for fermionic quantum simulations (Preprint 2003.01862) 29 Anschuetz E R, Olson J P, Aspuru-Guzik A and Cao Y arXiv:1808.08927 30 Xu X, Sun J, Endo S, Li Y, Benjamin S C and Yuan X Variational algorithms for linear algebra (Preprint 1909.03898) 31 Lubasch M, Joo J, Moinier P, Kiffner M and Jaksch D 2020 Phys. Rev. A 101 010301 32 Nu Q S C, Lamm H, Lawrence S and Yamauchi Y 2019 Phys. Rev. D 100 034518 33 Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. A 95 023604 34 Stryker J R 2019 Phys. Rev. A 99 042301 35 Halimeh J C and Hauke P 2020 Phys. Rev. Lett. 125 030503 36 Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392 37 B\"uchler H P, Hermele M, Huber S D, Fisher M P A and Zoller P 2005 Phys. Rev. Lett. 95 040402 38 Lewenstein M S A A V D B S A and Sen U 2007 Adv. Phys. 56 243 39 Boada O C A L J I and Pico V 2010 New J. Phys. 12 113055 40 Bermudez A, Mazza L, Rizzi M, Goldman N, Lewenstein M and Martin-Delgado M A 2010 Phys. Rev. Lett. 105 190404 41 Banerjee D D M M M R E S P W U J and Zoller P 2012 Phys. Rev. Lett. 109 175302 42 Zohar E C J I and Reznik B 2012 Phys. Rev. Lett. 109 125302 43 Zohar E C J I and Reznik B 2013 Phys. Rev. Lett. 110 055302 44 Zohar E, Cirac J I and Reznik B 2013 Phys. Rev. Lett. 110 125304 45 Zohar E, Cirac J I and Reznik B 2015 Rep. Prog. Phys. 79 014401 46 Stannigel K, Hauke P, Marcos D, Hafezi M, Diehl S, Dalmonte M and Zoller P 2014 Phys. Rev. Lett. 112 120406 47 G\"org F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161 48 Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke P, Berges J and Jendrzejewski F 2020 Science 367 1128 49 Blatt R and Roos C F 2012 Nat. Phys. 8 277 50 Hauke P M D D M and Zoller P 2013 Phys. Rev. 3 041018 51 Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P and Blatt R 2016 Nature 534 516 52 Clark L W, Anderson B M, Feng L, Gaj A, Levin K and Chin C 2018 Phys. Rev. Lett. 121 030402 53 Davoudi Z, Hafezi M, Monroe C, Pagano G, Seif A and Shaw A 2020 Phys. Rev. Research 2 023015 54 Marcos D R P R E and Zoller P 2013 Phys. Rev. Lett. 111 110504 55 Marcos D, Widmer P, Rico E, Hafezi M, Rabl P, Wiese U J and Zoller P 2014 Ann. Phys. 351 634 56 Tagliacozzo L C A Z A and Lewenstein M 2013 Ann. Phys. 330 160 57 Tagliacozzo L, Celi A, Orland P, Mitchell M W and Lewenstein M 2013 Nat. Commun. 4 2615 58 Zhang J, Unmuth-Yockey J, Zeiher J, Bazavov A, Tsai S W and Meurice Y 2018 Phys. Rev. Lett. 121 223201 59 Bernien H, Schwartz S, Keesling A, Levine H, Omran A, Pichler H, Choi S, Zibrov A S, Endres M, Greiner M, Vuleti\'c V and Lukin M D 2017 Nature 551 579 60 Surace F M, Mazza P P, Giudici G, Lerose A, Gambassi A and Dalmonte M 2020 Phys. Rev. X 10 021041 61 Wiese U J 2013 Ann. Phys. 525 777 62 Zhang D W, Zhu Y Q, Zhao Y X, Yan H and Zhu S L 2018 Adv. Phys. 67 253 63 Zhang D W, Wang Z D and Zhu S L 2011 Front. Phys. 7 31 64 Jordan S P, Lee K S M and Preskill J 2012 Science 336 1130 65 Notarnicola S E E F P M G P S and Pepe F V 2015 J. Phys. A: Math. Theor. 48 30FT01 66 Lamm H and Lawrence S 2018 Phys. Rev. Lett. 121 170501 67 Klco N, Dumitrescu E F, McCaskey A J, Morris T D, Pooser R C, Sanz M, Solano E, Lougovski P and Savage M J 2018 Phys. Rev. A 98 032331 68 Nu Q S C, Lamm H, Lawrence S and Yamauchi Y 2020 Phys. Rev. Research 2 013272 69 Klco N and Savage M J 2019 Phys. Rev. A 99 052335 70 Klco N, Savage M J and Stryker J R 2020 Phys. Rev. D 101 074512 71 Yeter-Aydeniz K, Dumitrescu E F, McCaskey A J, Bennink R S, Pooser R C and Siopsis G 2019 Phys. Rev. A 99 032306 72 Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501 73 Zohar E and Cirac J I 2018 Phys. Rev. B 98 075119 74 Bauer C W, de Jong W A, Nachman B and Provasoli D arXiv:1904.03196 75 Raychowdhury I and Stryker J R 2020 Phys. Rev. D 101 114502 76 Du W, Vary J P, Zhao X and Zuo W arXiv:2006.01369 77 Roggero A, Li A C, Carlson J, Gupta R and Perdue G N 2020 Phys. Rev. D 101 074038 78 Kreshchuk M, Jia S, Kirby W M, Goldstein G, Vary J P and Love P J arXiv:2009.07885 79 de Jong W A, Metcalf M, Mulligan J, P\losko\'n M, Ringer F and Yao X arXiv:2010.03571 80 Davoudi Z, Raychowdhury I and Shaw A (Preprint 2009.11802) 81 Wei A Y, Naik P, Harrow A W and Thaler J 2020 Phys. Rev. D 101 094015 82 Klco N and Savage M J arXiv:2002.02018 83 Holland E T, Wendt K A, Kravvaris K, Wu X, Ormand W E, DuBois J L, Quaglioni S and Pederiva F 2020 Phys. Rev. A 101 062307 84 Avkhadiev A, Shanahan P and Young R 2020 Phys. Rev. Lett. 124 080501 85 Kharzeev D E and Kikuchi Y 2020 Phys. Rev. Research 2 023342 86 Shaw A F, Lougovski P, Stryker J R and Wiebe N 2020 Quantum 4 306 87 Liu J and Xin Y arXiv:2004.13234 88 Mueller N, Tarasov A and Venugopalan R 2020 Phys. Rev. D 102 016007 89 Bepari K, Malik S, Spannowsky M and Williams S arXiv:2010.00046 90 Kreshchuk M, Kirby W M, Goldstein G, Beauchemin H and Love P J arXiv:2002.04016 91 Muschik C, Heyl M, Martinez E, Monz T, Schindler P, Vogell B, Dalmonte M, Hauke P, Blatt R and Zoller P 2017 New J. Phys. 19 103020 92 Hackett D C, Howe K, Hughes C, Jay W, Neil E T and Simone J N 2019 Phys. Rev. A 99 062341 93 Alexandru A, Bedaque P F, Harmalkar S, Lamm H, Lawrence S, Warrington N C and NuQS Collaboration 2019 Phys. Rev. D 100 114501 94 Gui-Lu L 2006 Commun. Theor. Phys. 45 825 95 Childs A M, Kothari R and Somma R D 2017 Siam. J. Comput. 46 1920 96 Van Apeldoorn J, Gilyen A, Gribling S and de Wolf R 2017 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). Proceedings 403-414 INSPEC:17339111 97 Chowdhury A N and Somma R D 2017 Quantum Information & Computation 17 41 98 Gily\'en A, Su Y, Low G H and Wiebe N 2019 Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing STOC 2019 (New York: Association for Computing Machinery) p. 1933204 99 Arrazola J M, Kalajdzievski T, Weedbrook C and Lloyd S 2019 Phys. Rev. A 100 032306 100 Lau H K, Pooser R, Siopsis G and Weedbrook C 2017 Phys. Rev. Lett. 118 080501 101 Zhang D B, Xue Z Y, Zhu S L and Wang Z D 2019 Phys. Rev. A 99 012331 102 Zhang D B, Zhu S L and Wang Z D 2020 Phys. Rev. Lett. 124 010506 103 Zhang D B, Zhang G Q, Xue Z Y, Zhu S L and Wang Z D Continuous-variable assisted thermal quantum simulation (Preprint 2006.00471) 104 Kalajdzievski T, Weedbrook C and Rebentrost P 2018 Phys. Rev. A 97 062311 105 Lloyd S 2003 Quantum Information with Continuous Variables, Ed. Braunstein S L and Pati A K (Dordrecht: Springer Netherlands) pp. 37-45 106 Furusawa A and Van Loock P2011 Quantum teleportation and entanglement: a hybrid approach to optical quantum information processing (John Wiley & Sons) 107 Andersen U L, Neergaard-Nielsen J S, van Loock P and Furusawa A 2015 Nat. Phys. 11 713 108 Liu N N, Thompson J, Weedbrook C, Lloyd S, Vedral V, Gu M L and Modi K 2016 Phys. Rev. A 93 052304 109 Gan H, Maslennikov G, Tseng K W, Nguyen C and Matsukevich D 2020 Phys. Rev. Lett. 124 170502 110 Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 111 Monroe C and Kim J 2013 Science 339 1164 112 Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162 113 Campagne-Ibarcq P, Eickbusch A, Touzard S, Zalys-Geller E, Frattini N E, Sivak V V, Reinhold P, Puri S, Shankar S, Schoelkopf R J, Frunzio L, Mirrahimi M and Devoret M H 2020 Nature 584 368 114 Noh K, Girvin S and Jiang L 2020 Phys. Rev. Lett. 125 080503 115 Low G H and Chuang I L 2017 Phys. Rev. Lett. 118 010501 116 Campbell E 2019 Phys. Rev. Lett. 123 070503 117 Childs A M, Su Y, Tran M C, Wiebe N and Zhu S 2019 A theory of trotter error (Preprint 1912.08854) 118 Tran M C, Chu S K, Su Y, Childs A M and Gorshkov A V 2020 Phys. Rev. Lett. 124 220502 119 Albash T and Lidar D A 2018 Rev. Mod. Phys. 90 015002 120 Shen Y, Zhang X, Zhang S, Zhang J N, Yung M H and Kim K 2017 Phys. Rev. A 95 020501 121 Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru-Guzik A, Blatt R and Roos C F 2018 Phys. Rev. X 8 031022 122 Zhang D B and Yin T 2020 Phys. Rev. A 101 032311 123 McClean J R, Kimchi-Schwartz M E, Carter J and de Jong W A 2017 Phys. Rev. A 95 042308 124 Nakanishi K M, Mitarai K and Fujii K 2019 Phys. Rev. Research 1 033062 125 Higgott O, Wang D and Brierley S 2019 Quantum 3 156 126 Zhang D B, Yuan Z H and Yin T 2020 arXiv:2006.15781 [quant-ph] 127 Liu J G, Mao L, Zhang P and Wang L 2019 Solving quantum statistical mechanics with variational autoregressive networks and quantum circuits (Preprint 1912.11381) 128 Wu J and Hsieh T H 2019 Phys. Rev. Lett. 123 220502 129 Zhu D, Johri S, Linke N M, Landsman K A, Nguyen N H, Alderete C H, Matsuura A Y, Hsieh T H and Monroe C Generation of thermofield double states and critical ground states with a quantum computer (Preprint 1906.02699) 130 Chowdhury A N, Low G H and Wiebe N A variational quantum algorithm for preparing quantum gibbs states (Preprint 2002.00055) 131 Wang Y, Li G and Wang X Variational quantum gibbs state preparation with a truncated taylor series (Preprint 2005.08797) 132 McArdle S, Jones T, Endo S, Li Y, Benjamin S C and Yuan X 2019 npj Quantum Information 5 75 133 Endo S, Sun J, Li Y, Benjamin S C and Yuan X 2020 Phys. Rev. Lett. 125 010501 134 Susskind L 1977 Phys. Rev. D 16 3031 135 Dumitrescu E F, McCaskey A J, Hagen G, Jansen G R, Morris T D, Papenbrock T, Pooser R C, Dean D J and Lougovski P 2018 Phys. Rev. Lett. 120 210501 136 Ji X 2013 Phys. Rev. Lett. 110 262002 137 Kang Z B, Wang E, Wang X N and Xing H 2014 Phys. Rev. Lett. 112 102001 138 Kang Z B, Vitev I and Xing H 2014 Phys. Rev. Lett. 113 062002 139 Lin H W, Nocera E R, Olness F, et al. 2018 Progress in Particle and Nuclear Physics 100 107 140 Harmalkar S, Lamm H and Lawrence S Quantum simulation of field theories without state preparation (Preprint 2001.11490) 141 McClean J R, Rubin N C, Sung K J, et al. 2020 Quantum Science and Technology 5 034014 142 Bergholm V, Izaac J, Schuld M, Gogolin C, Alam M S, Ahmed S, Arrazola J M, Blank C, Delgado A, Jahangiri S, McKiernan K, Meyer J J, Niu Z, Sz\'ava A and Killoran N arXiv:1811.04968 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|