Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080303    DOI: 10.1088/1674-1056/ad426b
GENERAL Prev   Next  

Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field

A. Kalani, Alireza Amani†, and M. A. Ramzanpour
Department of Physics, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Abstract  We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field. In order to describe the corresponding structure, we consider the propagation of electrons in graphene as relativistic fermion quasi-particles, and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation. Next, to solve and analyze the Dirac equation, we obtain the eigenvalues and eigenvectors using the Legendre differential equation. After that, we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal $n$ and spin-orbit $k$. Then, the values of the energy spectrum for the ground state and the first excited state are calculated, and the wave functions and the corresponding probabilities are plotted in terms of coordinates $r$. In what follows, we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors $K_x$ and $K_y$. Finally, the energy bands are plotted in terms of the wave vectors $K_x$ and $K_y$ with and without the magnetic term.
Keywords:  massive Dirac equation      Rosen-Morse potential      Legendre polynomial      gapped graphene      pseudo-spin symmetry  
Received:  03 January 2024      Revised:  06 April 2024      Accepted manuscript online: 
PACS:  03.65.Pm (Relativistic wave equations)  
  02.30.Gp (Special functions)  
  72.80.Vp (Electronic transport in graphene)  
  31.30.J- (Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)  
Corresponding Authors:  Alireza Amani     E-mail:  al.amani@iau.ac.ir

Cite this article: 

A. Kalani, Alireza Amani, and M. A. Ramzanpour Massive Dirac particles based on gapped graphene with Rosen-Morse potential in a uniform magnetic field 2024 Chin. Phys. B 33 080303

[1] Khveshchenko D V 2009 J. Phys.: Condens. Matter 21 075303
[2] Ulstrup S, Johannsen J C, Cilento F, Miwa J A, Crepaldi A, Zacchigna M, Cacho C, Chapman R, Springate E, Mammadov S and Fromm, F 2014 Phys. Rev. Lett. 112 257401
[3] Setare M R and Jahani D 2010 Physica B 405 1433
[4] Guo J Y, Meng J and Xu F X 2003 Chin. Phys. Lett. 20 602
[5] Ikhdair S M and Sever R 2010 Applied Mathematics and Computation 216 911
[6] Guo J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[7] Sari R A, Suparmi A and Cari C 2015 Chin. Phys. B 25 010301
[8] Wei G F and Dong S H 2009 Europhys. Lett. 87 40004
[9] Wei G F and Dong S H 2008 Phys. Lett. A 373 49
[10] Jia C S, Liu J Y, Wang P Q and Lin X 2009 International Journal of Theoretical Physics 48 2633
[11] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[12] Ikhdair S M and Hamzavi M 2013 Chin. Phys. B 22 040302
[13] Oyewumi K J and Akoshile C O 2010 Euro. Phys. J. A 45 311
[14] Chen G, Chen Z D and Lou Z M 2004 Chin. Phys. 13 279
[15] Morse P M 1929 Phys. Rev. 34 57
[16] Zhang P, Long H C and Jia C S 2016 Euro. Phys. J. Plus 131 117
[17] Berkdemir C 2006 Nuclear Physics A 770 32
[18] Ikhdair S M 2011 Journal of Mathematical Physics 52 122108
[19] Bayrak O and Boztosun I 2007 J. Phys. A: Math. Theor. 40 11119
[20] Amani A R and Ghorbanpour H 2012 Acta Physica Polonica-Series B Elementary Particle Physics 43 1795
[21] Hecht K T and Adler A 1969 Nuclear Physics A 137 129
[22] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[23] Ginocchio J N, Leviatan A, Meng J and Zhou S G 2004 Phys. Rev. C 69 034303
[24] Smith G B and Tassie L J 1971 Annals of Physics 65 352
[25] Bell J S and Ruegg H 1975 Nuclear Physics B 98 151
[26] Jia C S, Chen T and Cui L G 2009 Phys. Lett. A 373 1621
[27] Zali Z, Amani A, Sadeghi J and Pourhassan B 2021 Physica B 614 413045
[28] Wei G F and Dong S H 2010 Physica Scripta 81 035009
[29] Wei G F and Dong S H 2010 Euro. Phys. J. A 46 207
[30] Qiang W C, Sun G H and Dong S H 2012 Annalen der Physik 524 360
[31] Pedersen T G, Jauho A P and Pedersen K 2009 Phys. Rev. B 79 113406
[32] Zhu W, Wang Z, Shi Q, Szeto K Y, Chen J and Hou J G 2009 Phys. Rev. B 79 155430
[33] Klimchitskaya G L, Mostepanenko V M and Petrov V M 2017 Phys. Rev. B 96 235432
[34] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[35] Neto A C, Guinea F, Peres N M, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[36] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[37] Chenaghlou A, Aghaei S and Ghadirian Niari N 2021 Euro. Phys. J. D 75 139
[38] Onyenegecha C P, Opara A I, Njoku I J, Udensi S C, Ukewuihe U M, Okereke C J and Omame A 2021 Results in Physics 25 104144
[39] Eshghi M and Mehraban H 2016 Journal of Mathematical Physics 57 082105
[40] Alimohammadian M and Sohrabi B 2020 Scientific Reports 10 1
[41] Downing C A and Portnoi M E 2016 Phys. Rev. B 94 165407
[42] Gupta K S and Sen S 2008 Phys. Rev. B 78 205429
[43] Hassanabadi H, Maghsoodi E, Oudi R, Zarrinkamar S and Rahimov H 2012 Euro. Phys. J. Plus 127 120
[44] Arda A and Sever R 2015 Commun. Theor. Phys. 64 269
[45] Min H, Borghi G, Polini M and MacDonald A H 2008 Phys. Rev. B 77 041407
[46] San-Jose P, Prada E, McCann E and Schomerus H 2009 Phys. Rev. Lett. 102 247204
[47] Tuan D V, Ortmann F, Soriano D, Valenzuela S O and Roche S 2014 Nat. Phys. 10 857
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[3] Analytic solutions of the double ring-shaped Coulomb potential in quantum mechanics
Chen Chang-Yuan (陈昌远), Lu Fa-Lin (陆法林), Sun Dong-Sheng (孙东升), Dong Shi-Hai (董世海). Chin. Phys. B, 2013, 22(10): 100302.
[4] Spin symmetry in the relativistic modified Rosen–Morse potential with the approximate centrifugal term
Chen Wen-Li (陈文利), Wei Gao-Feng (卫高峰). Chin. Phys. B, 2011, 20(6): 062101.
[5] A new quantum mechanical photon counting distribution formula
Yuan Hong-Chun(袁洪春), Fan Hong-Yi(范洪义), and Hu Li-Yun(胡利云) . Chin. Phys. B, 2011, 20(11): 114204.
No Suggested Reading articles found!