Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 128502    DOI: 10.1088/1674-1056/ac0796

Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations

Pengtao Song(宋鹏涛)1,2, Xueyi Guo(郭学仪)1, Kai Xu(许凯)1, Xiaohui Song(宋小会)1, Zhan Wang(王战)1,2, Zhongcheng Xiang(相忠诚)1, Hekang Li(李贺康)1, Luhong Su(苏鹭红)1,2, Yirong Jin(金贻荣)1, and Dongning Zheng(郑东宁)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Josephson parameter amplifier (JPA) is a microwave signal amplifier device with near-quantum-limit-noise performance. It has important applications in scientific research fields such as quantum computing and dark matter detection. This work reports the fabrication and characterization of broadband JPA devices and their applications in multi-qubit readout and squeezing of vacuum state. We use a process in which transmission lines and electrodes are made of niobium thin film and aluminum Josephson junctions are made by Dolan bridge technique. We believe this process is more convenient than the process we used previously. The whole production process adopts electron beam lithography technology to ensure high structural resolution. The test result shows that the gain value of the manufactured JPA can exceed 15 dB, and the amplification bandwidth is about 400 MHz. The noise temperature is about 400 mK at the working frequency of 6.2 GHz. The devices have been successfully used in experiments involving superconducting multi-qubit quantum processors. Furthermore, the device is applied to squeeze vacuum fluctuations and a squeezing level of 1.635 dB is achieved.
Keywords:  Josephson parameter amplifier      squeezed state      quantum computing  
Received:  15 April 2021      Revised:  29 May 2021      Accepted manuscript online:  03 June 2021
PACS:  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0304300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Corresponding Authors:  Dongning Zheng     E-mail:

Cite this article: 

Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁) Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations 2021 Chin. Phys. B 30 128502

[1] Caves C M 1982 Phys. Rev. D 26 1817
[2] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H and Simon R W 1988 Phys. Rev. Lett. 60 764
[3] Movshovich R, Yurke B, Kaminsky P G, Smith A D, Silver A H, Simon R W and Schneider M V 1990 Phys. Rev. Lett. 65 1419
[4] Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S and Yamamoto T 2013 Appl. Phys. Lett. 103 132602
[5] Vijay R, Slichter D H and Siddiqi I 2011 Phys. Rev. Lett. 106 110502
[6] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutierrez-Jauregui R, Schoelkopf R J, Mirrahimi M, Carmichael H J and Devoret M H 2019 Nature 570 200
[7] Asztalos S J, Carosi G, Hagmann C, Kinion D, van Bibber K, Hotz M, Rosenberg L J, Rybka G, Hoskins J, Hwang J, Sikivie P, Tanner D B, Bradley R and Clarke J 2010 Phys. Rev. Lett. 104 041301
[8] Mutus J Y, White T C, Jeffrey E, Sank D, Barends R, Bochmann J, Chen Y, Chen Z, Chiaro B, Dunsworth A, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Vainsencher A, Wenner J, Siddiqi I, Vijay R, Cleland A N and Martinis J M 2013 Appl. Phys. Lett. 103 122602
[9] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N and Martinis J M 2014 Appl. Phys. Lett. 104 263513
[10] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A and Vijay R 2015 Appl. Phys. Lett. 107 262601
[11] Huang K, Guo Q, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X and Zheng D 2017 Chin. Phys. B 26 094203
[12] Kelly J S 2015 Fault-tolerant superconducting qubits (Ph.D. Dissertation) (Santa Barbara:University of California) p. 172
[13] Pozar D M 2015 Microwave Engineering (3rm rd edition) (John Wiley & Sons)
[14] Derek W R 1965 Comm. Math. Phys. 1 159
[15] Stoler D 1970 Phys. Rev. D 1 3217
[16] Yuen H P 1976 Phys. Rev. A 13 2226
[17] Walls D F 1983 Nature 306 141
[18] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett. 55 2409
[19] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520
[20] Zhong L, Menzel E P, Di Candia R, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A and Gross R 2013 New J. Phys. 15 125013
[21] Kinsler P, Fernee M and Drummond P D 1993 Phys. Rev. A 48 3310
[22] Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602
[23] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[24] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[25] Scharf G and Walls D F 1984 Opt. Commun. 50 245
[26] Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D and Siddiqi I 2015 Science 350 307
[27] Dolan G J 1977 Appl. Phys. Lett. 31 337
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[5] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[6] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[7] Preparation of spin squeezed state in SiV centers coupled by diamond waveguide
Yong-Hong Ma(马永红), Yuan Xu(许媛), Quan-Zhen Ding(丁全振), and Yu-Sui Chen(陈予遂). Chin. Phys. B, 2021, 30(10): 100311.
[8] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[9] Evolution of quantum states via Weyl expansion in dissipative channel
Li-Yun Hu(胡利云), Zhi-Ming Rao(饶志明), Qing-Qiang Kuang(况庆强). Chin. Phys. B, 2019, 28(8): 084206.
[10] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[11] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[12] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[13] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[14] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[15] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2018, 27(11): 110306.
No Suggested Reading articles found!