1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Josephson parameter amplifier (JPA) is a microwave signal amplifier device with near-quantum-limit-noise performance. It has important applications in scientific research fields such as quantum computing and dark matter detection. This work reports the fabrication and characterization of broadband JPA devices and their applications in multi-qubit readout and squeezing of vacuum state. We use a process in which transmission lines and electrodes are made of niobium thin film and aluminum Josephson junctions are made by Dolan bridge technique. We believe this process is more convenient than the process we used previously. The whole production process adopts electron beam lithography technology to ensure high structural resolution. The test result shows that the gain value of the manufactured JPA can exceed 15 dB, and the amplification bandwidth is about 400 MHz. The noise temperature is about 400 mK at the working frequency of 6.2 GHz. The devices have been successfully used in experiments involving superconducting multi-qubit quantum processors. Furthermore, the device is applied to squeeze vacuum fluctuations and a squeezing level of 1.635 dB is achieved.
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0304300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁) Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations 2021 Chin. Phys. B 30 128502
[1] Caves C M 1982 Phys. Rev. D26 1817 [2] Yurke B, Kaminsky P G, Miller R E, Whittaker E A, Smith A D, Silver A H and Simon R W 1988 Phys. Rev. Lett.60 764 [3] Movshovich R, Yurke B, Kaminsky P G, Smith A D, Silver A H, Simon R W and Schneider M V 1990 Phys. Rev. Lett.65 1419 [4] Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S and Yamamoto T 2013 Appl. Phys. Lett.103 132602 [5] Vijay R, Slichter D H and Siddiqi I 2011 Phys. Rev. Lett.106 110502 [6] Minev Z K, Mundhada S O, Shankar S, Reinhold P, Gutierrez-Jauregui R, Schoelkopf R J, Mirrahimi M, Carmichael H J and Devoret M H 2019 Nature570 200 [7] Asztalos S J, Carosi G, Hagmann C, Kinion D, van Bibber K, Hotz M, Rosenberg L J, Rybka G, Hoskins J, Hwang J, Sikivie P, Tanner D B, Bradley R and Clarke J 2010 Phys. Rev. Lett.104 041301 [8] Mutus J Y, White T C, Jeffrey E, Sank D, Barends R, Bochmann J, Chen Y, Chen Z, Chiaro B, Dunsworth A, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Vainsencher A, Wenner J, Siddiqi I, Vijay R, Cleland A N and Martinis J M 2013 Appl. Phys. Lett.103 122602 [9] Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N and Martinis J M 2014 Appl. Phys. Lett.104 263513 [10] Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A and Vijay R 2015 Appl. Phys. Lett.107 262601 [11] Huang K, Guo Q, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X and Zheng D 2017 Chin. Phys. B26 094203 [12] Kelly J S 2015 Fault-tolerant superconducting qubits (Ph.D. Dissertation) (Santa Barbara:University of California) p. 172 [13] Pozar D M 2015 Microwave Engineering (3rm rd edition) (John Wiley & Sons) [14] Derek W R 1965 Comm. Math. Phys.1 159 [15] Stoler D 1970 Phys. Rev. D1 3217 [16] Yuen H P 1976 Phys. Rev. A13 2226 [17] Walls D F 1983 Nature306 141 [18] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Phys. Rev. Lett.55 2409 [19] Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett.57 2520 [20] Zhong L, Menzel E P, Di Candia R, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A and Gross R 2013 New J. Phys.15 125013 [21] Kinsler P, Fernee M and Drummond P D 1993 Phys. Rev. A48 3310 [22] Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett.94 123602 [23] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature431 162 [24] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett.95 060501 [25] Scharf G and Walls D F 1984 Opt. Commun.50 245 [26] Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D and Siddiqi I 2015 Science350 307 [27] Dolan G J 1977 Appl. Phys. Lett.31 337
Qubits based on semiconductor quantum dots Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.