Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080301    DOI: 10.1088/1674-1056/ad51f7
Special Issue: SPECIAL TOPIC — Quantum communication and quantum network
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source

Menghui Mao(毛梦辉)†, Wei Zhou(周唯)†, Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓)‡, and Shi-Ning Zhu(祝世宁)
National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
Abstract  Neural networks are becoming ubiquitous in various areas of physics as a successful machine learning (ML) technique for addressing different tasks. Based on ML technique, we propose and experimentally demonstrate an efficient method for state reconstruction of the widely used Sagnac polarization-entangled photon source. By properly modeling the target states, a multi-output fully connected neural network is well trained using only six of the sixteen measurement bases in standard tomography technique, and hence our method reduces the resource consumption without loss of accuracy. We demonstrate the ability of the neural network to predict state parameters with a high precision by using both simulated and experimental data. Explicitly, the mean absolute error for all the parameters is below 0.05 for the simulated data and a mean fidelity of 0.99 is achieved for experimentally generated states. Our method could be generalized to estimate other kinds of states, as well as other quantum information tasks.
Keywords:  machine learning      state estimation      quantum state tomography      polarization-entangled photon source  
Received:  11 May 2024      Revised:  29 May 2024      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Wj (State reconstruction, quantum tomography)  
  02.60.-x (Numerical approximation and analysis)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), Leading-edge technology Program of Jiangsu Natural Science Foundation (Grant No. BK20192001), and the National Natural Science Foundation of China (Grant No. 11974178).
Corresponding Authors:  Yan-Xiao Gong     E-mail:  gongyanxiao@nju.edu.cn

Cite this article: 

Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source 2024 Chin. Phys. B 33 080301

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters We K 1993 Phys. Rev. Lett. 70 1895
[2] Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
[3] Zhang Q, Goebel A, Wagenknecht C, Chen Y A, Zhao B, Yang T, Mair A, Schmiedmayer J and Pan J W 2006 Nat. Phys. 2 678
[4] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41
[5] Pironio S, Acin A, Massar S, de la Giroday A B, Matsukevich D N, Maunz P, Olmschenk S, Hayes D, Luo L, Manning T A and Monroe C 2010 Nature 464 1021
[6] Christensen B G, McCusker K T, Altepeter J B, Calkins B, Gerrits T, Lita A E, Miller A, Shalm L K, Zhang Y, Nam S W, Brunner N, Lim C C W, Gisin N and Kwiat P G 2013 Phys. Rev. Lett. 111 130406
[7] Liu W Z, Li M H, Ragy S, Zhao S R, Bai B, Liu Y, Brown P J, Zhang J, Colbeck R, Fan J, Zhang Q and Pan J W 2021 Nat. Phys. 17 448
[8] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[9] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2021 Nature 464 45
[10] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[11] White A G, James D F V, Eberhard P H and Kwiat P G 1999 Phys. Rev. Lett. 83 3103
[12] James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
[13] Ma Y G, Pang L G, Wang R and Zhou K 2023 Chin. Phys. Lett. 40 122101
[14] Suresh R, Bishnoi H, Kuklin A V, Parikh A, Molokeev M, Harinarayanan R, Gharat S and Hiba P 2024 Front. Phys. 12
[15] Coelho C N, Kuusela A, Li S, Zhuang H, Ngadiuba J, Aarrestad T K, Loncar V, Pierini M, Pol A A and Summers S 2021 Nat. Mach. Intell. 3 675
[16] Kremer J, Stensbo-Smidt K, Gieseke F, Pedersen K S and Igel C 2017 IEEE Intelligent Systems 32 16
[17] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2017 Nature 559 547
[18] Jiang W, Lu Z and Deng D L 2022 Chin. Phys. Lett. 39 050303
[19] Gao J, Qiao L F, Jiao Z Q, Ma Y C, Hu C Q, Ren R J, Yang A L, Tang H, Yung M H and Jin X M 2018 Phys. Rev. Lett. 120 240501
[20] Ma Y C and Yung M H 2018 npj Quantum Inf. 4 34
[21] Yang M, Ren C, Ma Y, Xiao Y, Ye X J, Song L L, Xu J S, Yung M H, Li C F and Guo G C 2019 Phys. Rev. Lett. 123 190401
[22] Ren C and Chen C 2019 Phys. Rev. A 100 022314
[23] Zhang X, Luo M, Wen Z, Feng Q, Pang S, Luo W and Zhou X 2021 Phys. Rev. Lett. 127 130503
[24] Koutný D, Ginés L, Moczaĺa-Dusanowska M, H’ofling S, Schneider C, Predojević A and Jezek M 2023 Sci. Adv. 9 7131
[25] Carleo G and Troyer M 2017 Science 355 602-6
[26] Sun Y, Sun C W, Zhou W, Yang R, Duan J C, Gong Y X, Xu P and Zhu S N 2023 Chin. Phys. B 32 080308
[27] Fedrizzi A, Herbst T, Poppe A, Jennewein T and Zeilinger A 2007 Opt. Express 15 15377
[28] Kim T, Fiorentino M and Wong F N C 2006 Phys. Rev. A 73 012316
[29] Sun Q C, Jiang Y F, Bai B, Zhang W, Li H, Jiang X, Zhang J, You L, Chen X, Wang Z, Zhang Q, Fan J and Pan J W 2019 Nat. Photonics 13 687
[30] Gómez S, Mattar A, Machuca I, Gómez E S, Cavalcanti D, Farías O J, Acín A and Lima G 2019 Phys. Rev. A 99 032108
[31] Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C and Zhang Y S 2018 npj Quantum Inf. 4 63
[32] Gómez E S, Gómez S, González P, Canas G, Barra J F, Delgado A, Xavier G B, Cabello A, Kleinmann M, Vértesi T and Lima G 2016 Phys. Rev. Lett. 117 260401
[33] Huang Y, Li Y, Qi Z, Yang Y, Zheng Y and Chen X 2023 Quantum Front. 2 4
[34] Li J Y, Fang X X, Zhang T, Tabia G N M, Lu H and Liang Y C 2021 Phys. Rev. Res. 3 023045
[35] Liu H Y, Tian X H, Gu C, Fan P, Ni X, Yang R, Zhang J N, Hu M, Guo J, Cao X, Hu X, Zhao G, Lu Y Q, Gong Y X, Xie Z and Zhu S N 2020 Natl. Sci. Rev. 7 921
[36] Sun K, Hao Z Y, Wang Y, Li J K, Xu X Y, Xu J S, Han Y J, Li C F and Guo G C 2022 Light Sci. Appl. 11 203
[37] Wu T, Izaac J A, Li Z-X, Wang K, Chen Z-Z, Zhu S, Wang J B and Ma X-S 2020 Phys. Rev. Lett. 125 240501
[38] Hsu K Y, Li H Y and Psaltis D 1990 Proc. IEEE 78 1637
[39] Lewenstein M and Nowak A 1990 Phys. Rev. Lett. 62 225
[40] Srivastava N, Hinton G, Krizhevsky A, Sutskever I and Salakhutdinov R 2014 Mach. Learn. Res. 15 1929
[1] A graph neural network approach to the inverse design for thermal transparency with periodic interparticle system
Bin Liu(刘斌) and Yixi Wang(王译浠). Chin. Phys. B, 2024, 33(8): 084401.
[2] Physics-embedded machine learning search for Sm-doped PMN-PT piezoelectric ceramics with high performance
Rui Xin(辛睿), Yaqi Wang(王亚祺), Ze Fang(房泽), Fengji Zheng(郑凤基), Wen Gao(高雯), Dashi Fu(付大石), Guoqing Shi(史国庆), Jian-Yi Liu(刘建一), and Yongcheng Zhang(张永成). Chin. Phys. B, 2024, 33(8): 087701.
[3] Physical information-enhanced graph neural network for predicting phase separation
Yaqiang Zhang(张亚强), Xuwen Wang(王煦文), Yanan Wang(王雅楠), and Wen Zheng(郑文). Chin. Phys. B, 2024, 33(7): 070702.
[4] Prediction of impurity spectrum function by deep learning algorithm
Ting Liu(刘婷), Rong-Sheng Han(韩榕生), and Liang Chen(陈亮). Chin. Phys. B, 2024, 33(5): 057102.
[5] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[6] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[7] Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
Yayong Wu(吴亚勇), Xinwei Wang(王欣伟), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2024, 33(4): 040205.
[8] Computing large deviation prefactors of stochastic dynamical systems based on machine learning
Yang Li(李扬), Shenglan Yuan(袁胜兰), Linghongzhi Lu(陆凌宏志), and Xianbin Liu(刘先斌). Chin. Phys. B, 2024, 33(4): 040501.
[9] Recent advances in protein conformation sampling by combining machine learning with molecular simulation
Yiming Tang(唐一鸣), Zhongyuan Yang(杨中元), Yifei Yao(姚逸飞), Yun Zhou(周运), Yuan Tan(谈圆),Zichao Wang(王子超), Tong Pan(潘瞳), Rui Xiong(熊瑞), Junli Sun(孙俊力), and Guanghong Wei(韦广红). Chin. Phys. B, 2024, 33(3): 030701.
[10] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[11] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[12] Prediction of multifaceted asymmetric radiation from the edge movement in density-limit disruptive plasmas on Experimental Advanced Superconducting Tokamak using random forest
Wenhui Hu(胡文慧), Jilei Hou(侯吉磊), Zhengping Luo(罗正平), Yao Huang(黄耀), Dalong Chen(陈大龙),Bingjia Xiao(肖炳甲), Qiping Yuan(袁旗平), Yanmin Duan(段艳敏), Jiansheng Hu(胡建生),Guizhong Zuo(左桂忠), and Jiangang Li(李建刚). Chin. Phys. B, 2023, 32(7): 075211.
[13] A new method of constructing adversarial examples for quantum variational circuits
Jinge Yan(颜金歌), Lili Yan(闫丽丽), and Shibin Zhang(张仕斌). Chin. Phys. B, 2023, 32(7): 070304.
[14] Generalization properties of restricted Boltzmann machine for short-range order
M A Timirgazin and A K Arzhnikov. Chin. Phys. B, 2023, 32(6): 067401.
[15] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
No Suggested Reading articles found!