|
|
Approximate error correction scheme for three-dimensional surface codes based reinforcement learning |
Ying-Jie Qu(曲英杰)1, Zhao Chen(陈钊)2, Wei-Jie Wang(王伟杰)1, and Hong-Yang Ma(马鸿洋)1,† |
1 School of Sciences, Qingdao University of Technology, Qingdao 266033, China; 2 School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China |
|
|
Abstract Quantum error correction technology is an important method to eliminate errors during the operation of quantum computers. In order to solve the problem of influence of errors on physical qubits, we propose an approximate error correction scheme that performs dimension mapping operations on surface codes. This error correction scheme utilizes the topological properties of error correction codes to map the surface code dimension to three dimensions. Compared to previous error correction schemes, the present three-dimensional surface code exhibits good scalability due to its higher redundancy and more efficient error correction capabilities. By reducing the number of ancilla qubits required for error correction, this approach achieves savings in measurement space and reduces resource consumption costs. In order to improve the decoding efficiency and solve the problem of the correlation between the surface code stabilizer and the 3D space after dimension mapping, we employ a reinforcement learning (RL) decoder based on deep $Q$-learning, which enables faster identification of the optimal syndrome and achieves better thresholds through conditional optimization. Compared to the minimum weight perfect matching decoding, the threshold of the RL trained model reaches 0.78%, which is 56% higher and enables large-scale fault-tolerant quantum computation.
|
Received: 08 February 2023
Revised: 16 May 2023
Accepted manuscript online: 25 May 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
87.64.Aa
|
(Computer simulation)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2021MF049, ZR2022LLZ012, and ZR2021LLZ001). |
Corresponding Authors:
Hong-Yang Ma
E-mail: hongyang_ma@aliyun.com
|
Cite this article:
Ying-Jie Qu(曲英杰), Zhao Chen(陈钊), Wei-Jie Wang(王伟杰), and Hong-Yang Ma(马鸿洋) Approximate error correction scheme for three-dimensional surface codes based reinforcement learning 2023 Chin. Phys. B 32 100307
|
[1] Xin T, Wang B X, Li K R, Xiang Y K, Shi J W, Wang T, Ruan D and Long G L 2018 Chin. Phys. B 27 020308 [2] Zhou N R, Zhu K N and Zou X F 2019 Ann. Phys. 531 1800520 [3] Ye T Y and Jiang L Z 2013 Chin. Phys. Lett. 30 040305 [4] Yan D D, Fan X K, Chen Z Y and Ma H Y 2022 Chin. Phys. B 31 010304 [5] Shor P W 1995 Phys. Rev. A 52 R2493 [6] Sun J and Lu S F 2020 Chin. Phys. B 29 100303 [7] Wei R Y, Nie M, Yang G, Zhang M L, Sun A J and Pei C X 2019 Acta Phys. Sin. 68 140302 (in Chinese) [8] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500 [9] Takita M, Córcoles A D, Magesan E, Abdo B, Brink M, Cross A, Chow J M and Gambetta J M 2016 Phys. Rev. Lett. 117 210505 [10] Linke N M, Gutierrez M, Landsman K A, Figgatt C, Debnath S, Brown K R and Monroe C 2016 Sci. Adv. 3 1701074 [11] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Rev. Mod. Phys. 80 1083 [12] Zarei M H 2015 Phys. Rev. A 91 022319 [13] Brown B J, Loss D, Pachos J K, Self C N and Wootton J R 2016 Rev. Mod. Phys. 88 045005 [14] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012 Phys. Rev. A 86 032324 [15] Nickerson N H, Li Y and Benjamin S C 2013 Nat. Commun. 4 1756 [16] Hayden P, Nezami S, Popescu S and Salton G 2021 PRX Quantum 2 010326 [17] Faist P, Nezami S, Albert V V, Salton G, Pastawski F, Hayden P and Preskill J 2020 Phys. Rev. X 10 041018 [18] Cai W Z, Ma Y W, Wang W T, Zou C L and Sun L Y 2021 Fundamen. Res. 1 50 [19] Kubica A and Demkowicz-Dobrzański R 2021 Phys. Rev. Lett. 126 150503 [20] Geng M J, Chen Y, Xu T J and Ye T Y 2022 EPJ Quantum Technol. 9 36 [21] Xue Y J, Wang H W, Tian Y B, Wang Y N, Wang Y X and Wang S M 2022 Quantum Eng. 9 7643871 [22] Maskara N, Kubica A and Jochym-O'Connor T 2019 Phys. Rev. A 99 052351 [23] Bravyi S, Browne D, Calpin P, Campbell E, Gosset D and Howard M 2019 Quantum 3 181 [24] Qassim H, Pashayan H, Gosset D 2021 Quantum 5 606 [25] Webster P, Vasmer M, Scruby T R and Bartlett S D 2022 Phys. Rev. R 4 013092 [26] Ni X 2020 Quantum 4 310 [27] Wang H W, Song Z Y, Wang Y N, Tian Y B and Ma H Y 2022 Quantum Inf. Process. 21 280 [28] Varsamopoulos S, Bertels K and Almudever C G 2020 Quantum Machine Intellig. 2 3 [29] Wang H W, Xue Y J, Qu Y J, Mu X Y and Ma H Y 2022 npj Quantum Inf. 8 134 [30] Bombin H and Martin-Delgado M A 2007 Phys. Rev. Lett. 98 160502 [31] Sheth M, Jafarzadeh S Z and Gheorghiu V 2020 Phys. Rev. A 101 032338 [32] Bombín H 2016 New J. Phys. 18 043038 [33] Scruby T R, Browne D E, Webster P and Vasmer M 2022 Quantum 6 721 [34] Shao C P 2020 Quantum Inf. Process. 19 102 [35] Baireuther P, O'Brien T E, Tarasinski B and Beenakker C W J 2018 Quantum 2 48 [36] Arulkumaran K, Deisenroth M P, Brundage M and Bharath A A 2017 IEEE Signal Process. Mag. 34 26 [37] Lin T X, Su Z, Xu Q C, Xing R and Fang D F 2020 IEEE Acc. 8 69284 [38] Andreasson P, Johansson J, Liljestrand S and Granath M 2019 Quantum 3 183 [39] Cheung W C, Simchi-Levi D and Zhu R 2020 International Conference on Machine Learning 119 1843 [40] Chen S Y C, Yang C H H, Qi J, Chen P Y, Ma X L and Goao H S 2020 IEEE Acc. 8 141007 [41] Fan X K, Liu G Z, Wang H W, Ma H Y, Li W and Wang S M 2022 J. University of Electronic Science and Technology of China 51 642 [42] Mnih V, Kavukcuoglu K, Silver D, et al. 2015 Nature 518 529 [43] Zhang Q C, Lin M, Yang L T, Chen Z K and Li P 2019 IEEE Trans. Sustainable Comput. 4 132 [44] Zhang Q, Lin M, Yang L T, Chen Z K, Khan S U and Li P 2018 IEEE Trans. Services Comput. 12 739 [45] Brown B J 2020 Sci. Adv. 6 eaay4929 [46] Chamberland C and Noh K 2020 npj Quantum Information 6 91 [47] Chamberland C and Cross A W 2019 Quantum 3 143 [48] Colomer L D, Skotiniotis M and Muñoz-Tapia R 2020 Phys. Lett. A 384 126353 [49] Sweke R, Kesselring M S, van Nieuwenburg E P L and Eisert J 2020 Machine Learning: Sci. Technol. 2 025005 [50] Nautrup H P, Delfosse N, Dunjko V, Briegel H J and Friis N 2019 Quantum 3 215 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|