Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 020302    DOI: 10.1088/1674-1056/abc157
GENERAL Prev   Next  

Quantifying entanglement in terms of an operational way

Deng-Hui Yu(于登辉)1 and Chang-Shui Yu(于长水)1,2,
1 School of Physics, Dalian University of Technology, Dalian 116024, China; 2 DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
Abstract  We establish entanglement monotones in terms of an operational approach, which is closely connected with the state conversion from pure states to the objective state by the local operations and classical communications. It is shown that any good entanglement quantifier defined on pure states can induce an entanglement monotone for all density matrices. Particularly, we show that our entanglement monotone is the maximal one among all those having the same form for pure states. In some special cases, our proposed entanglement monotones turn to be equivalent to the convex roof construction, which hence gain an operational meaning. Some examples are given to demonstrate different cases.
Keywords:  quantum entanglement      entanglement measure      quantum resource theory  
Received:  15 August 2020      Revised:  14 September 2020      Accepted manuscript online:  15 October 2020
PACS:  03.67.-a (Quantum information)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775040, 12011530014 and 11375036) and the Fundamental Research Funds for the Central Universities.China (Grant No. DUT20LAB203).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水) Quantifying entanglement in terms of an operational way 2021 Chin. Phys. B 30 020302

1 Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
2 Plenio M B and Virmani S 2007 Quantum. Inf. Comput. 7 1
3 Bennett C H and DiVincenzo D P 2000 Nature 404 247
4 Nielsen M A and Chuang I L2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 1-33
5 Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
6 Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
7 Bennett C H and Brassard G 1984 Theor. Comput. Sci. 560 7
8 Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
9 Zhang W and Han Z F 2019 Acta Phys. Sin. 68 070301 (in Chinese)
10 Chang L W, Zhang Y Q, Tian X X, Qian Y H and Zheng S H 2020 Chin. Phys. B 29 010304
11 Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
12 Song T T, Zhang J, Gao F, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 1333
13 Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
14 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
16 Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
17 Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401
18 Henderson L and Vedral V 2001 J. Phys. A: Math. Gen. 34 6899
19 Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
20 Zurek W 2000 Ann. Phys. (Germany) 9 855
21 Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
22 Yadin B, Ma J, Girolami D, Gu M and Vedral V 2016 Phys. Rev. X 6 041028
23 Yu D H, Zhang L Q and Yu C S 2020 Phys. Rev. A 101 062114
24 Guo Q Q, Chen X Y and Wang Y Y 2014 Chin. Phys. B 23 050309
25 Geetha P J, Sudha and K S Mallesh 2017 Chin. Phys. B 26 050301
26 Guo M L, Li B, Wang Z X and Fei S M 2020 Chin. Phys. B 29 070304
27 Duan J, Luo Y and Li Y M 2018 Chin. Phys. B 27 110305
28 Jiang N Q, Wang Y J, Zheng Y Z and Cai G C 2008 Chin. Phys. Lett. 25 1943
29 Audenaert K, Verstraete F and De Moor B 2001 Phys. Rev. A 64 052304
30 Mintert F, Carvalho A R, Ku\'s M and Buchleitner A 2005 Phys. Rep. 415 207
31 Peres A 1996 Phys. Rev. Lett. 77 1413
32 Wootters W K 2001 Quantum Info. Comput. 1 27C4
33 Wootters W K 1998 Phys. Rev. Lett. 80 2245
34 Uhlmann A 2000 Phys. Rev. A 62 032307
35 Mintert F, Ku\'s M and Buchleitner A 2004 Phys. Rev. Lett. 92 167902
36 Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
37 Horodecki P and Horodecki R 2001 Quantum Info. Comput. 1 45C75
38 Rains E M 1999 Phys. Rev. A 60 173
39 Hayden P M, Horodecki M and Terhal B M 2001 J. Phys. A: Math. Gen. 34 6891
40 Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
41 Uhlmann A 1998 Open Systems & Information Dynamics 5 209
42 Vidal G 2000 J. Mod. Opt. 47 355
43 Plenio M B 2005 Phys. Rev. Lett. 95 090503
44 Audenaert K, Plenio M B and Eisert J 2003 Phys. Rev. Lett. 90 027901
45 Jonathan D and Plenio M B 1999 Phys. Rev. Lett. 83 1455
46 Bhatia R1997 Matrix Analysis(New York: Springer)
47 Marshall A W and Olkin I1979 Inequalities: Theory of Majorization and Its Applications (New York: Academic Press)
48 Nielsen M A 1999 Phys. Rev. Lett. 83 436
49 Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022
50 Hughston L P, Jozsa R and Wootters W K 1993 Phys. Lett. A 183 14
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[6] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[7] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[8] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[9] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[10] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[11] Optimized monogamy and polygamy inequalities for multipartite qubit entanglement
Jia-Bin Zhang(张嘉斌), Zhi-Xiang Jin(靳志祥), Shao-Ming Fei(费少明), and Zhi-Xi Wang(王志玺). Chin. Phys. B, 2021, 30(10): 100310.
[12] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[13] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[14] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[15] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
No Suggested Reading articles found!