Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040304    DOI: 10.1088/1674-1056/acad6a
GENERAL Prev   Next  

Lorentz quantum computer

Wenhao He(何文昊)1, Zhenduo Wang(王朕铎)1, and Biao Wu(吴飙)1,2,3,†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Abstract  A theoretical model of computation is proposed based on Lorentz quantum mechanics. Besides the standard qubits, this model has an additional bit, which we call hyperbolic bit (or hybit in short). A set of basic logical gates are constructed and their universality is proved. As an application, a search algorithm is designed for this computer model and is found to be exponentially faster than Grover's search algorithm.
Keywords:  quantum computing      Lorentz quantum mechanics      Grover search  
Received:  15 August 2022      Revised:  28 November 2022      Accepted manuscript online:  21 December 2022
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  89.70.Eg (Computational complexity)  
Fund: We thank Qi Zhang for helpful discussion. We are supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303302 and 2018YFA0305602), the National Natural Science Foundation of China (Grant No. 11921005), and Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01).
Corresponding Authors:  Biao Wu     E-mail:

Cite this article: 

Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙) Lorentz quantum computer 2023 Chin. Phys. B 32 040304

[1] Deutsch D 1997 Fabric Of Reality (New York: Penguin Books)
[2] Wu B 2022 Frank Wilczek - 50 Years of Theoretical Physics Ed. Niemi A, Kphua K K and Shapere A (World Scientific) pp. 281-290
[3] Zhang Q and Wu B 2018 New J. Phys. 20 013024
[4] Pauli W 1943 Rev. Mod. Phys. 15 175
[5] Grover L K 1997 Phys. Rev. Lett. 79 325
[6] Li Q, Zhang C J, Cheng Z D, Liu W Z, Wang J F, Yan F F, Lin Z H, Xiao Y, Sun K, Wang Y T, Tang J S, Xu J S, Li C F and Guo G C 2019 Optica 6 67
[7] Wu B and Niu Q 2003 New J. Phys. 5 104
[8] Zhang C, Dudarev A M and Niu Q 2006 Phys. Rev. Lett. 97 040401
[9] Bognar J 1974 Indefinite inner product space (New York: Springer-Verlag)
[10] Mostafazadeh A 2002 Journal of Mathematical Physics 43 205
[11] Mostafazadeh A 2002 Journal of Mathematical Physics 43 2814
[12] Mostafazadeh A 2002 Journal of Mathematical Physics 43 3944
[13] Pethick C J and Smith H 2002 Bose-Einstein condensation in dilute gases (Cambridge: Cambridge University Press)
[14] DiVincenzo D P 2000 Fortschritte der Physik Progress of Physics 48 771
[15] Nielson M A and Chuang I L 2000 Quantum computing and quantum information (Cambridge: Cambridge University Press)
[16] Farhi E and Gutmann S 1998 Phys. Rev. A 57 2403
[17] van Dam W, Mosca M and Vazirani U 2001 Proceedings 42nd IEEE Symposium on Foundations of Computer Science, Newport Beach, CA, USA, pp. 279–287
[18] Roland J and Cerf N J 2002 Phys. Rev. A 65 042308)
[19] Wilczek F, Hu H Y and Wu B 2020 Chin. Phys. Lett. 37 050304
[20] Karp R M 1972 Reducibility among Combinatorial Problems (Boston, MA: Springer US) pp. 85-103
[21] Xiao M and Nagamochi H 2017 Information and Computation 255 126
[22] Yu H, Wilczek F and Wu B 2021 Chin. Phys. Lett. 38 030304
[23] Aaronson S 2005 Proceedings of the Royal Society A 461 3473
[24] Traversa F L and Di Ventra M 2017 Chaos 27 023107
[25] Zhang Y H and Ventra M D 2021 Chaos 31 063127
[26] Bacon D 2004 Phys. Rev. A 70 032309
[27] Abrams D S and Lloyd S 1998 Phys. Rev. Lett. 81 3992
[28] Bennett C H, Leung D, Smith G and Smolin J A 2009 Phys. Rev. Lett. 103 170502
[29] Boykin P O, Mor T, Pulver M, Roychowdhury V and Vatan F 1999 40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039) (IEEE) pp. 486-494
[30] Dummit D S and Foote R M 2004 Abstract Algebra vol. 3 (Wiley Hoboken)
[1] An overview of quantum error mitigation formulas
Dayue Qin(秦大粤), Xiaosi Xu(徐晓思), and Ying Li(李颖). Chin. Phys. B, 2022, 31(9): 090306.
[2] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[3] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[4] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[5] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[6] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[7] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[8] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[9] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[10] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[11] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[12] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[13] Nuclear magnetic resonance for quantum computing: Techniques and recent achievements
Tao Xin(辛涛), Bi-Xue Wang(王碧雪), Ke-Ren Li(李可仁), Xiang-Yu Kong(孔祥宇), Shi-Jie Wei(魏世杰), Tao Wang(王涛), Dong Ruan(阮东), Gui-Lu Long(龙桂鲁). Chin. Phys. B, 2018, 27(2): 020308.
[14] On the usefulness of an assisted driving Hamiltonian for quantum adiabatic evolution
Jie Sun(孙杰), Songfeng Lu(路松峰). Chin. Phys. B, 2018, 27(11): 110306.
[15] Cavity-assisted quantum computing in a silicon nanostructure
Tang Bao (唐宝), Qin Hao (秦豪), Zhang Rong (张融), Liu Jin-Ming (刘金明), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(5): 050307.
No Suggested Reading articles found!