Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
A proposal for preparation of cluster states with linear optics |
Le Ju(鞠乐)1,2, Ming Yang(杨名)2,†, and Peng Xue(薛鹏)1,‡ |
1 Beijing Computational Science Research Center, Beijing 100084, China; 2 School of Physics and Material Science, Anhui University, Hefei 230601, China |
|
|
Abstract Measurement-based quantum computation in an optical setup shows great promise towards the implementation of large-scale quantum computation. The difficulty of measurement-based quantum computation lies in the preparation of cluster state. In this paper, we propose the method of generating the large-scale cluster state, which is a platform for measurement-based quantum computation. In order to achieve more complex quantum circuits, the preparation protocol of N-photon cluster state will be proposed as a generalization of the preparation of four-and five-photon cluster states. Furthermore, our proposal is experimentally feasible.
|
Received: 08 October 2020
Revised: 15 December 2020
Accepted manuscript online: 30 December 2020
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
42.50.-p
|
(Quantum optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12025401 and U1930402). |
Corresponding Authors:
†Corresponding author. E-mail: mingyang@ahu.edu.cn ‡Corresponding author. E-mail: gnep.eux@gmail.com
|
Cite this article:
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏) A proposal for preparation of cluster states with linear optics 2021 Chin. Phys. B 30 030306
|
1 Deutsch D 1985 Proc. R. Soc. Lond. A 400 97 2 Grover L K 1997 Phys. Rev. Lett. 79 325 3 Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 336 1130 4 O'Malley P J J, Babbush R and Kivlichan I D, et al. \hrefhttps://journals.aps.org/prx/abstract/10.1103/PhysRevX.6.031007 2016 Phys. Rev. X 6 031007 5 Cai X D, Weedbrook C, Su Z E, Chen M C, Gu M, Zhu M J, Li L, Liu N L, Lu C Y and Pan J W 2013 Phys. Rev. Lett. 110 230501 6 Li Z K, Liu X M, Xu N Y and Du J F 2015 Phys. Rev. Lett. 114 140504 7 Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, H\"ofling S, Lu C Y and Pan J W 2017 Nat. Photon. 11 361 8 Qiang X G, zhou X Q, wang J W, wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O'Brien J L, Thompson M G and Matthews J C F 2017 Nat. Photon. 12 534 9 Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501 10 Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602 11 Deutsch D E 1989 Proc. R. Soc. Lond. A 425 73 12 Tang B, Qin H and Xue P 2014 Chin. Phys. B 23 050307 13 Xue P 2011 Phys. Scr. 84 045002 14 Xue P 2011 Chin. Phys. Lett. 28 070305 15 Xue P 2010 Phys. Lett. A 374 2601 16 Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188 17 Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169 18 Chen X, Gu Z C and Wen X G 2010 Phys. Rev. B 82 155138 19 Luo Z H, Li J, Li Z K, Hung L Y, Wan Y D, Peng X H and Du J F 2018 Nat. Phys. 14 160 20 Farhi E, Goldstone J, Gutmann S and Sipser M arXiv:0001106v1 21 Long G L 2006 Commun. Theor. Phys. 45 825 22 Xue P 2010 Phys. Rev. A 81 052331 23 Ladd T D, Jelezko F, Lanamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 24 Raussendorf R, Brown D E and Briegel H J 2003 Phys. Rev. A 68 022312 25 Nielsen M A 2004 Phys. Rev. Lett. 93 040503 26 Vallone G, Pomarico E and Martini G D, et al.2008 Phys. Rev. A 78 042335 27 Schlingemann D and Werner R F 2001 Phys. Rev. A 65 012308 28 Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phy. Lett. A 364 7 29 Yuan H, Liu Y M and Zhang Z J 2008 Phy. Lett. A 372 5938 30 Briegel H J and Raussendorf R 2001 Phy. Rev. Lett. 86 910 31 Su X, Tan A, Jia X, Xie C and Peng K 2007 Phys. Rev. Lett. 98 070502 32 Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Physher M and Pfister O 2008 Laser Physics 18 659 33 Menicucci N C, Ma X and Ralph T C 2010 Phys. Rev. Lett. 104 250503 34 Su X, Zhao Y, Hao S, Jia X, Xie C and Peng K 2012 Opt Lett. 37 5178 35 Pooser R and Jing J 2014 Phys. Rev. A 90 043841 36 Houhou O, Aissaoui H and Ferraro A 2015 Phys. Rev. A 92 063843 37 Li X M, Yang M, Paunkovi\'c N, Li D C and Cao Z L 2017 Phys. Lett. A 381 3875 38 Ju L, Yang M, Paunkovi\'c N, Chu W J and Cao Z L 2019 Quantum Inf. Process. 18 176 39 Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, H\"ofling S, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 116 020401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|