Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030306    DOI: 10.1088/1674-1056/abd74b
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

A proposal for preparation of cluster states with linear optics

Le Ju(鞠乐)1,2, Ming Yang(杨名)2,†, and Peng Xue(薛鹏)1,
1 Beijing Computational Science Research Center, Beijing 100084, China; 2 School of Physics and Material Science, Anhui University, Hefei 230601, China
Abstract  Measurement-based quantum computation in an optical setup shows great promise towards the implementation of large-scale quantum computation. The difficulty of measurement-based quantum computation lies in the preparation of cluster state. In this paper, we propose the method of generating the large-scale cluster state, which is a platform for measurement-based quantum computation. In order to achieve more complex quantum circuits, the preparation protocol of N-photon cluster state will be proposed as a generalization of the preparation of four-and five-photon cluster states. Furthermore, our proposal is experimentally feasible.
Keywords:  measurement-based quantum computing      cluster states      linear optical elements  
Received:  08 October 2020      Revised:  15 December 2020      Accepted manuscript online:  30 December 2020
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12025401 and U1930402).
Corresponding Authors:  Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏) A proposal for preparation of cluster states with linear optics 2021 Chin. Phys. B 30 030306

1 Deutsch D 1985 Proc. R. Soc. Lond. A 400 97
2 Grover L K 1997 Phys. Rev. Lett. 79 325
3 Aspuru-Guzik A, Dutoi A D, Love P J and Head-Gordon M 2005 Science 336 1130
4 O'Malley P J J, Babbush R and Kivlichan I D, et al. \href 2016 Phys. Rev. X 6 031007
5 Cai X D, Weedbrook C, Su Z E, Chen M C, Gu M, Zhu M J, Li L, Liu N L, Lu C Y and Pan J W 2013 Phys. Rev. Lett. 110 230501
6 Li Z K, Liu X M, Xu N Y and Du J F 2015 Phys. Rev. Lett. 114 140504
7 Wang H, He Y, Li Y H, Su Z E, Li B, Huang H L, Ding X, Chen M C, Liu C, Qin J, Li J P, He Y M, Schneider C, Kamp M, Peng C Z, H\"ofling S, Lu C Y and Pan J W 2017 Nat. Photon. 11 361
8 Qiang X G, zhou X Q, wang J W, wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C, Wang J B, O'Brien J L, Thompson M G and Matthews J C F 2017 Nat. Photon. 12 534
9 Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
10 Xue P, Sanders B C and Leibfried D 2009 Phys. Rev. Lett. 103 183602
11 Deutsch D E 1989 Proc. R. Soc. Lond. A 425 73
12 Tang B, Qin H and Xue P 2014 Chin. Phys. B 23 050307
13 Xue P 2011 Phys. Scr. 84 045002
14 Xue P 2011 Chin. Phys. Lett. 28 070305
15 Xue P 2010 Phys. Lett. A 374 2601
16 Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
17 Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M and Zeilinger A 2005 Nature 434 169
18 Chen X, Gu Z C and Wen X G 2010 Phys. Rev. B 82 155138
19 Luo Z H, Li J, Li Z K, Hung L Y, Wan Y D, Peng X H and Du J F 2018 Nat. Phys. 14 160
20 Farhi E, Goldstone J, Gutmann S and Sipser M arXiv:0001106v1
21 Long G L 2006 Commun. Theor. Phys. 45 825
22 Xue P 2010 Phys. Rev. A 81 052331
23 Ladd T D, Jelezko F, Lanamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
24 Raussendorf R, Brown D E and Briegel H J 2003 Phys. Rev. A 68 022312
25 Nielsen M A 2004 Phys. Rev. Lett. 93 040503
26 Vallone G, Pomarico E and Martini G D, et al.2008 Phys. Rev. A 78 042335
27 Schlingemann D and Werner R F 2001 Phys. Rev. A 65 012308
28 Wang X W, Shan Y G, Xia L X and Lu M W 2007 Phy. Lett. A 364 7
29 Yuan H, Liu Y M and Zhang Z J 2008 Phy. Lett. A 372 5938
30 Briegel H J and Raussendorf R 2001 Phy. Rev. Lett. 86 910
31 Su X, Tan A, Jia X, Xie C and Peng K 2007 Phys. Rev. Lett. 98 070502
32 Zaidi H, Menicucci N C, Flammia S T, Bloomer R, Physher M and Pfister O 2008 Laser Physics 18 659
33 Menicucci N C, Ma X and Ralph T C 2010 Phys. Rev. Lett. 104 250503
34 Su X, Zhao Y, Hao S, Jia X, Xie C and Peng K 2012 Opt Lett. 37 5178
35 Pooser R and Jing J 2014 Phys. Rev. A 90 043841
36 Houhou O, Aissaoui H and Ferraro A 2015 Phys. Rev. A 92 063843
37 Li X M, Yang M, Paunkovi\'c N, Li D C and Cao Z L 2017 Phys. Lett. A 381 3875
38 Ju L, Yang M, Paunkovi\'c N, Chu W J and Cao Z L 2019 Quantum Inf. Process. 18 176
39 Ding X, He Y, Duan Z C, Gregersen N, Chen M C, Unsleber S, Maier S, Schneider C, Kamp M, H\"ofling S, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 116 020401
[1] Electronic cluster state entanglement concentration based on charge detection
Liu Jiong (刘炯), Zhao Sheng-Yang (赵圣阳), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2014, 23(2): 020313.
[2] Preparation of cluster states with trapped electrons on a liquid helium surface
Ai Ling-Yan(艾凌艳), Shi Yan-Li(石艳丽), and Zhang Zhi-Ming(张智明) . Chin. Phys. B, 2011, 20(10): 100303.
[3] Fast generation of cluster states in a linear ion trap
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Zhang Xiao-Long(张小龙), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(9): 090317.
[4] Unconventional geometric phase gate and multiqubit entanglement for hot ions with a frequency-modulated field
Zhong Wen-Xue(钟文学), Cheng Guang-Ling(程广玲), and Chen Ai-Xi(陈爱喜). Chin. Phys. B, 2010, 19(11): 110310.
[5] Preparation of cluster state in large detuned cavity
Zou Chang-Lin(邹长林), Gao Guo-Jun(高国军), Lu Yan(卢艳), Li Da-Chuang(李大创), Yang Ming(杨名), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2008, 17(4): 1174-1177.
[6] Generation of atomic Greenberger-Horne-Zeilinger states and cluster states through cavity-assisted interaction
Huang Xiu-Hua (黄秀花), Lin Xiu-Min (林秀敏), Lin Gong-Wei (林功伟), Chen Zhi-Hua (陈志华), Tang Yao-Xiang (汤耀祥). Chin. Phys. B, 2008, 17(12): 4382-4387.
[7] A scheme for demonstration of four-photon de Broglie wavelength
Zhou Xiao-Qi(周晓祺) and Yang Tao(杨涛). Chin. Phys. B, 2008, 17(10): 3549-3552.
[8] Total teleportation of zero- and one-photon entangled states in running waves
W. B. Cardoso, A. T. Avelar, B. Baseia, and N. G. de Almeida. Chin. Phys. B, 2008, 17(1): 60-63.
[9] Efficient scheme of quantum SWAP gate and multi-atom cluster state via cavity QED
Jiang Chun-Lei(姜春蕾), Fang Mao-Fa(方卯发), and Hu Yao-Hua(胡要花). Chin. Phys. B, 2008, 17(1): 190-193.
[10] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[11] Feasible schemes for preparing all five-photon graph states
Zhang Jin(张瑾), Zhou Xiao-Qi(周晓祺), and Yang Tao(杨涛). Chin. Phys. B, 2007, 16(8): 2224-2228.
[12] Dynamics of the entanglement witness for three qubits in common environment
Lu Huai-Xin(逯怀新). Chin. Phys. B, 2007, 16(7): 1878-1882.
[13] Scheme for entanglement concentration of unknown W class states via linear optics
Zhang Li-Hua(章礼华), Dong Ping(董萍), and Cao Zhuo-Liang(曹卓良). Chin. Phys. B, 2007, 16(3): 640-643.
[14] Linear optical implementation of optimal unambiguous discrimination among quantum states
Lu Jing(卢竞), Zhou Lan(周兰), and Kuang Le-Man(匡乐满). Chin. Phys. B, 2006, 15(9): 1941-1946.
[15] Simple experimental scheme of teleporting a two-qubit state via linear optical elements
Yuan Hong-Chun(袁洪春), Li Heng-Mei(李恒梅), and Qi Kai-Guo(齐开国). Chin. Phys. B, 2006, 15(8): 1686-1689.
No Suggested Reading articles found!