Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 040503    DOI: 10.1088/1674-1056/ad1d4d
GENERAL Prev   Next  

Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method

Heyang Ma(马赫阳)1, Wanzhou Zhang(张万舟)1,2,†, Yanting Tian(田彦婷)1, Chengxiang Ding(丁成祥)3, and Youjin Deng(邓友金)2,4,5,‡
1 College of Physics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
3 School of Microelectronics & Data Science, Anhui University of Technology, Maanshan 243002, China;
4 Minjiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China;
5 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
Abstract  The two-component cold atom systems with anisotropic hopping amplitudes can be phenomenologically described by a two-dimensional Ising-XY coupled model with spatial anisotropy. At low temperatures, theoretical predictions [Phys. Rev. A 72 053604 (2005)] and [arXiv: 0706.1609] indicate the existence of a topological ordered phase characterized by Ising and XY disorder but with 2XY ordering. However, due to ergodic difficulties faced by Monte Carlo methods at low temperatures, this topological phase has not been numerically explored. We propose a linear cluster updating Monte Carlo method, which flips spins without rejection in the anisotropy limit but does not change the energy. Using this scheme and conventional Monte Carlo methods, we succeed in revealing the nature of topological phases with half-vortices and domain walls. In the constructed global phase diagram, Ising and XY-type transitions are very close to each other and differ significantly from the schematic phase diagram reported earlier. We also propose and explore a wide range of quantities, including magnetism, superfluidity, specific heat, susceptibility, and even percolation susceptibility, and obtain consistent and reliable results. Furthermore, we observed first-order transitions characterized by common intersection points in magnetizations for different system sizes, as opposed to the conventional phase transition where Binder cumulants of various sizes share common intersections. The critical exponents of different types of phase transitions are reasonably fitted. The results are useful to help cold atom experiments explore the half-vortex topological phase.
Keywords:  topological phase transition      Ising-XY model      Monte Carlo method      half vortex  
Received:  08 November 2023      Revised:  09 January 2024      Accepted manuscript online:  11 January 2024
PACS:  05.20.-y (Classical statistical mechanics)  
  05.10.Ln (Monte Carlo methods)  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  87.16.aj (Lattice models)  
Fund: Project supported by the Hefei National Research Center for Physical Sciences at the Microscale (Grant No. KF2021002), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 202303021221029 and 202103021224051), the National Natural Science Foundation of China (Grant Nos. 11975024, 12047503, and 12275263), the Anhui Provincial Supporting Program for Excellent Young Talents in Colleges and Universities (Grant No. gxyqZD2019023), and the National Key Research and Development Program of China (Grant No. 2018YFA0306501).
Corresponding Authors:  Wanzhou Zhang, Youjin Deng     E-mail:  zhangwanzhou@tyut.edu.cn;yjdeng@ustc.edu.cn

Cite this article: 

Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金) Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method 2024 Chin. Phys. B 33 040503

[1] Berezinsky V L 1972 Sov. Phys. JETP 34 610
[2] Kosterlitz J M and Thouless D J 1972 J. Phys. C:Solid State Physics 5 L124
[3] Cuccoli A, Fubini A, Tognetti V and Vaia R 2000 Phys. Rev. B 61 11289
[4] Granato E and Kosterlitz J M 1986 Phys. Rev. B 33 4767
[5] Kosterlitz J M 2017 Rev. Mod. Phys. 89 040501
[6] Lee D H and Grinstein G 1985 Phys. Rev. Lett. 55 541
[7] Berge B, Diep H T, Ghazali A and Lallemand P 1986 Phys. Rev. B 34 3177
[8] Granato E and Kosterlitz J M 1986 J. Phys. C:Solid State Physics 19 L59
[9] Granato E, Kosterlitz J M, Lee J and Nightingale M P 1991 Phys. Rev. Lett. 66 1090
[10] Lee J, Granato E and Kosterlitz J M 1991 Phys. Rev. B 44 4819
[11] Granato E and Kosterlitz J M 1988 J. Appl. Phys. 64 5636
[12] Isacsson A and Girvin S M 2005 Phys. Rev. A 72 053604
[13] Olsson P 1995 Phys. Rev. Lett. 75 2758
[14] Okumura S, Yoshino H and Kawamura H 2011 Phys. Rev. B 83 094429
[15] Song F F and Zhang G M 2022 Phys. Rev. Lett. 128 195301
[16] Xu C 2007 arXiv:0706.1609[cond-mat.str-el]
[17] Landau D P and Binder K 2021 A Guide to Monte Carlo Simulations in Statistical Physics, 5th edn. (Cambridge University Press) pp. 181——182
[18] Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A H and Teller E 1953 J. Chem. Phys. 21 1087
[19] Wolff U 1989 Phys. Rev. Lett. 62 361
[20] Swendsen R H and Wang J S 1986 Phys. Rev. Lett. 57 2607
[21] Drouin-Touchette V, Orth P P, Coleman P, Chandra P and Lubensky T C 2022 Phys. Rev. X 12 011043
[22] Xu J, Tsai S H, Landau D P and Binder K 2019 Phys. Rev. E 99 023309
[23] Binder K 1981 Phys. Rev. Lett. 47 693
[24] Beach M J S, Golubeva A and Melko R G 2018 Phys. Rev. B 97 045207
[25] Priviate discussion with Prof. Cenke Xu
[26] Jaksch D, Bruder C, Cirac J I, Gardiner C W and Zoller P 1998 Phys. Rev. Lett. 81 3108
[27] Isacsson A and Girvin S M 2005 Phys. Rev. A 72 053604
[28] Zhang L R, Ding C, Zhang W and Zhang L 2023 Phys. Rev. B 108 024402
[29] Zhang L R, Ding C, Deng Y and Zhang L 2022 Phys. Rev. B 105 224415
[30] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801
[31] Baity-Jesi M, Baños R A, Cruz A, et al. 2013 Phys. Rev. B 88 224416
[32] Ilgenfritz E M, Kerler W, Müller-Preussker M and Stüben H 2002 Phys. Rev. D 65 094506
[33] Sandvik A W 2010 AIP Conf. Proc. 1297 (American Institute of Physics) pp. 135——338
[34] Binder K and Landau D P 1984 Phys. Rev. B 30 1477
[35] Binder K 1981 Phys. Rev. Lett. 47 693
[36] Ding C, Deng Y, Guo W and Blöte H W J 2009 Phys. Rev. E 79 061118
[37] Wang L, Beach K S D and Sandvik A W 2006 Phys. Rev. B 73 014431
[38] Kardar M 2007 Statistical Physics of Fields (Cambridge University Press) pp. 163——168
[39] Lee D H and Grinstein G 1985 Phys. Rev. Lett. 55 541
[40] Hsieh Y D, Kao Y J and Sandvik A W 2013 J. Stat. Mech. 2013 P09001
[41] Burkov A A and Demler E 2006 Phys. Rev. Lett. 96 180406
[42] Klaus L, Bland T, Poli E, Politi C, Lamporesi G, Casotti E, Bisset R N, Mark M J and Ferlaino F 2022 Nat. Phys. 18 1453
[43] Hübscher D M and Wessel S 2013 Phys. Rev. E 87 062112
[44] Melchert O 2009 autoscale.py-a program for automatic finite-size scaling analyses:A user's guide arXiv:0910.5403[physics.comp-ph]
[45] Iino S, Morita S, Kawashima N and Sandvik A W 2019 J. Phys. Soc. Jpn. 88 034006
[46] Jin S, Sen A, Guo W and Sandvik A W 2013 Phys. Rev. B 87 144406
[47] Jin S, Sen A and Sandvik A W 2012 Phys. Rev. Lett. 108 045702
[48] Kuklov A, Prokof'ev N and Svistunov B 2004 Phys. Rev. Lett. 92 030403
[49] Rubio-Abadal A, Choi J Y, Zeiher J, Hollerith S, Rui J, Bloch I and Gross C 2019 Phys. Rev. X 9 041014
[50] Meng Z, Wang L, Han W, Liu F, Wen K, Gao C, Wang P, Chin C and Zhang J 2023 Nature 615 231
[51] Zhang Y C, Zhou X F, Zhou X, Guo G C, Pu H and Zhou Z W 2015 Phys. Rev. A 91 043633
[1] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[2] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[5] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[6] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[7] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[8] Effect of magnetic nanoparticles on magnetic field homogeneity
Si-Lin Guo(郭斯琳), Wen-Tong Yi(易文通), and Zhuang-Zhuang Li(李壮壮). Chin. Phys. B, 2023, 32(5): 050203.
[9] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[10] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[11] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[12] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[13] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[14] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[15] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
No Suggested Reading articles found!