CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties |
Yi-Jie Xiang(向依婕)1,2, Siyan Gao(高思妍)3, Chunlei Wang(王春雷)1,4, Haiping Fang(方海平)5, Xiangmei Duan(段香梅)6, Yi-Feng Zheng(郑益峰)2,7,†, and Yue-Yu Zhang(张越宇)2,7,‡ |
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; 4 College of Science, Shanghai University, Shanghai 200444, China; 5 School of Physics, East China University of Science and Technology, Shanghai 200237, China; 6 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 7 Wenzhou Institute, University of Chinese Academy of Sciences (UCAS), Wenzhou 325001, China |
|
|
Abstract Titanium dioxide (TiO$_{2}$) has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices. However, the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO$_{2}$, primarily attributed to the substantial band gaps (exceeding 3.0 eV) associated with its rutile and anatase phases. Leveraging multi-objective global optimization, we have identified two quasi-layered ternary Ti-O-S crystals, composed of titanium, oxygen, and sulfur. The calculations of formation energy, phonon dispersions, and thermal stability confirm the chemical, dynamical and thermal stability of these newly discovered phases. Employing the state-of-art hybrid density functional approach and many-body perturbation theory (quasiparticle GW approach and Bethe-Salpeter equation), we calculate the optical properties of both the TiOS phases. Significantly, both phases show favorable photocatalytic characteristics, featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation. Therefore, ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion, showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.
|
Received: 11 May 2024
Revised: 12 May 2024
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
Fund: Project supported by the Natural Science Foundation of WIUCAS (Grant Nos. WIUCASQD2023004 and WIUCASQD2022025), the National Natural Science Foundation of China (Grant Nos. 12304006, 12104452, 12022508, 12074394, and 12374061), the Shanghai Science and Technology Innovation Action Plan (Grant No. 23JC1401400), and the Natural Science Foundation of Wenzhou (Grant No. L2023005). |
Corresponding Authors:
Yi-Feng Zheng, Yue-Yu Zhang
E-mail: zhengyifeng@ucas.ac.cn;zhangyy@wiucas.ac.cn
|
Cite this article:
Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇) Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties 2024 Chin. Phys. B 33 087101
|
[1] Grant F A 1959 Rev. Mod. Phys. 31 646 [2] Diebold U 2003 Surf. Sci. Rep. 48 53 [3] Diasanayake M A K L, Senadeera G K R, Sarangika H N M, Ekanayake P M P C, Thotawattage C A, Divarathne H K D W M N R and Kumari J M K W 2016 Mater. Today: Proc. 3 S40 [4] Zakir O, Ait-Karra A, Idouhli R, Khadiri M, Dikici B, Aityoub A, Abouelfida A and Outzourhit A 2023 J. Solid State Electr. 27 2289 [5] Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi M M, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A and Pandey S 2023 J. Drug Deliv. Sci. Tec. 82 104370 [6] Ge S, Sang D, Zou L, Yao Y, Zhou C, Fu H, Xi H, Fan J, Meng L and Wang C 2023 Nanomaterials 13 1141 [7] Ding H, Zha D, Han S and Jiang N 2023 J. Taiwan Inst. Chem. E 151 105135 [8] Fujishima A and Honda K 1972 Nature 238 37 [9] Geldasa F T, Kebede M A, Shura M W and Hone F G 2023 Rsc Adv. 13 18404 [10] Tao X, Zhao Y, Wang S, Li C and Li R 2022 Chem. Soc. Rev. 51 3561 [11] Corby S, Rao R R, Steier L and Durrant J R 2021 Nat. Rev. Mater. 6 1136 [12] Eddy D R, Permana M D, Sakti L K, Sheha G A N, Solihudin, Hidayat S, Takei T, Kumada N and Rahayu I 2023 Nanomaterials (Basel) 13 704 [13] Guo Q, Zhou C, Ma Z and Yang X 2019 Adv. Mater. 31 e1901997 [14] Mikrut P, Kobielusz M, Indyka P and Macyk W 2020 Mater. Today Sustain. 10 100052 [15] Alagarasi A, Rajalakshmi P U, Shanthi K and Selvam P 2019 Mater. Today Sustain. 5 100016 [16] Armaković S J, Savanović M M and Armaković S 2023 Catalysts 13 26 [17] Wang J, Guo R T, Bi Z X, Chen X, Hu X and Pan W G 2022 Nanoscale 14 11512 [18] Singh R and Dutta S 2018 Fuel 220 607 [19] Baig U, Uddin M K and Sajid M 2020 Mater. Today Commun. 25 101534 [20] Prakash J, Samriti, Kumar A, Dai H, Janegitz B C, Krishnan V, Swart H C and Sun S 2021 Mater. Today Sustain. 13 100066 [21] Li Y, Shen Q Q, Guan R F, Xue J B, Liu X G, Jia H S, Xu B S and Wu Y C 2020 J. Mater. Chem. C 8 1025 [22] Ji J, Liu B Y, Huang H, Wang X X, Yan L Y, Qu S J, Liu X, Jiang H R, Duan M J, Li Y F and Li M C 2021 J. Mater. Chem. C 9 7057 [23] Wang J T, Fu K, Zhang X Y, Yin Q J, Wei G and Su Z Q 2021 J. Mater. Chem. C 9 8466 [24] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M and Bahnemann D W 2014 Chem. Rev. 114 9919 [25] Xing M, Fang W, Nasir M, Ma Y, Zhang J and Anpo M 2013 J. Catal. 297 236 [26] Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S 2010 Energ. Environ. Sci. 3 715 [27] Etghani S A, Ansari E and Mohajerzadeh S 2019 Sci. Rep-Uk. 9 17943 [28] Zhong J, Chen F and Zhang J 2010 J. Phys. Chem. C 114 933 [29] Piątkowska A, Janus M, Szymański K and Mozia S 2021 Catalysts 11 144 [30] Umezawa N, Janotti A, Rinke P, Chikyow T and Van de Walle C G 2008 Appl. Phys. Lett. 92 041104 [31] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 Appl. Phys. Lett. 81 454 [32] Huang Z, Gao Z, Gao S, Wang Q, Wang Z, Huang B and Dai Y 2017 Chin. J. Catal. 38 821 [33] Sharotri N and Sud D 2015 New J. Chem. 39 2217 [34] Bu X, Wang Y, Li J and Zhang C 2015 J. Alloys Compd. 628 20 [35] Lin Y H, Chou S H and Chu H 2014 J. Nanopart. Res. 16 2539 [36] Kovacic M, Perovic K, Papac J, Tomic A, Matoh L, Zener B, Brodar T, Capan I, Surca A K, Kusic H, Stangar U L and Loncaric Bozic A 2020 Materials (Basel) 13 1621 [37] Ramanathan R and Bansal V 2015 Rsc Adv. 5 1424 [38] El Nemr A, Helmy E T, Gomaa E A, Eldafrawy S and Mousa M 2019 J. Environ. Chem. Eng. 7 103385 [39] Shvadchina Y O, Cherepivskaya M K, Vakulenko V F, Sova A N, Stolyarova I V and Prikhodko R V 2016 J. Water Chem. Techno+. 37 283 [40] Zhang Q, Wang J, Yin S, Sato T and Saito F 2008 J. Am. Ceram. Soc. 87 1161 [41] Cui Y, Du H and Wen L 2009 Solid State Commun. 149 634 [42] Harb M, Sautet P and Raybaud P 2013 J. Phys. Chem. C 117 8892 [43] Chen Q, Liu M, He K and Li B 2014 Int. J. Photoenergy 2014 816234 [44] Jovanović D, Zagorac D, Matović B, Zarubica A and Zagorac J 2021 Acta Crystallographica Section B Structural Science, Acta Crystallogr. B 77 833 [45] Schleife A, Rinke P, Bechstedt F and Van de Walle C G 2013 J. Phys. Chem. C 117 4189 [46] Basera P, Saini S and Bhattacharya S 2019 J. Phys. Chem. C 7 14284 [47] Thatribud A 2019 Mater. Res. Express 6 095021 [48] Zhang Y Y, Gao W, Chen S, Xiang H and Gong X G 2015 Comp. Mater. Sci. 98 51 [49] Chen H Z, Zhang Y Y, Gong X and Xiang H 2014 J. Phys. Chem. C 118 2333 [50] Blochl P E 1994 Phys. Rev. B 50 17953 [51] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [52] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15 [53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [54] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [55] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396 [56] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [57] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [58] Togo A and Tanaka I 2015 Scripta Mater. 108 1 [59] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390 [60] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601 [61] Barhoumi M, Said I, Yedukondalu N and Said M 2023 Results Phys. 48 106438 [62] Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A and Ceder G 2016 Sci. Adv. 2 e1600225 [63] Chiodo L, García-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207 [64] Chen S and Wang L W 2012 Chem. Mater. 24 3659 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|