Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087101    DOI: 10.1088/1674-1056/ad4bc3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties

Yi-Jie Xiang(向依婕)1,2, Siyan Gao(高思妍)3, Chunlei Wang(王春雷)1,4, Haiping Fang(方海平)5, Xiangmei Duan(段香梅)6, Yi-Feng Zheng(郑益峰)2,7,†, and Yue-Yu Zhang(张越宇)2,7,‡
1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China;
4 College of Science, Shanghai University, Shanghai 200444, China;
5 School of Physics, East China University of Science and Technology, Shanghai 200237, China;
6 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
7 Wenzhou Institute, University of Chinese Academy of Sciences (UCAS), Wenzhou 325001, China
Abstract  Titanium dioxide (TiO$_{2}$) has attracted considerable research attentions for its promising applications in solar cells and photocatalytic devices. However, the intrinsic challenge lies in the relatively low energy conversion efficiency of TiO$_{2}$, primarily attributed to the substantial band gaps (exceeding 3.0 eV) associated with its rutile and anatase phases. Leveraging multi-objective global optimization, we have identified two quasi-layered ternary Ti-O-S crystals, composed of titanium, oxygen, and sulfur. The calculations of formation energy, phonon dispersions, and thermal stability confirm the chemical, dynamical and thermal stability of these newly discovered phases. Employing the state-of-art hybrid density functional approach and many-body perturbation theory (quasiparticle GW approach and Bethe-Salpeter equation), we calculate the optical properties of both the TiOS phases. Significantly, both phases show favorable photocatalytic characteristics, featuring band gaps suitable for visible optical absorption and appropriate band alignments with water for effective charge carrier separation. Therefore, ternary compound TiOS holds the potential for achieving high-efficiency photochemical conversion, showing our multi-objective global optimization provides a new approach for novel environmental and energy materials design with multicomponent compounds.
Keywords:  photocatalysis      first principles calculations      multi-objective global optimization  
Received:  11 May 2024      Revised:  12 May 2024      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
Fund: Project supported by the Natural Science Foundation of WIUCAS (Grant Nos. WIUCASQD2023004 and WIUCASQD2022025), the National Natural Science Foundation of China (Grant Nos. 12304006, 12104452, 12022508, 12074394, and 12374061), the Shanghai Science and Technology Innovation Action Plan (Grant No. 23JC1401400), and the Natural Science Foundation of Wenzhou (Grant No. L2023005).
Corresponding Authors:  Yi-Feng Zheng, Yue-Yu Zhang     E-mail:  zhengyifeng@ucas.ac.cn;zhangyy@wiucas.ac.cn

Cite this article: 

Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇) Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties 2024 Chin. Phys. B 33 087101

[1] Grant F A 1959 Rev. Mod. Phys. 31 646
[2] Diebold U 2003 Surf. Sci. Rep. 48 53
[3] Diasanayake M A K L, Senadeera G K R, Sarangika H N M, Ekanayake P M P C, Thotawattage C A, Divarathne H K D W M N R and Kumari J M K W 2016 Mater. Today: Proc. 3 S40
[4] Zakir O, Ait-Karra A, Idouhli R, Khadiri M, Dikici B, Aityoub A, Abouelfida A and Outzourhit A 2023 J. Solid State Electr. 27 2289
[5] Pourmadadi M, Rajabzadeh-Khosroshahi M, Eshaghi M M, Rahmani E, Motasadizadeh H, Arshad R, Rahdar A and Pandey S 2023 J. Drug Deliv. Sci. Tec. 82 104370
[6] Ge S, Sang D, Zou L, Yao Y, Zhou C, Fu H, Xi H, Fan J, Meng L and Wang C 2023 Nanomaterials 13 1141
[7] Ding H, Zha D, Han S and Jiang N 2023 J. Taiwan Inst. Chem. E 151 105135
[8] Fujishima A and Honda K 1972 Nature 238 37
[9] Geldasa F T, Kebede M A, Shura M W and Hone F G 2023 Rsc Adv. 13 18404
[10] Tao X, Zhao Y, Wang S, Li C and Li R 2022 Chem. Soc. Rev. 51 3561
[11] Corby S, Rao R R, Steier L and Durrant J R 2021 Nat. Rev. Mater. 6 1136
[12] Eddy D R, Permana M D, Sakti L K, Sheha G A N, Solihudin, Hidayat S, Takei T, Kumada N and Rahayu I 2023 Nanomaterials (Basel) 13 704
[13] Guo Q, Zhou C, Ma Z and Yang X 2019 Adv. Mater. 31 e1901997
[14] Mikrut P, Kobielusz M, Indyka P and Macyk W 2020 Mater. Today Sustain. 10 100052
[15] Alagarasi A, Rajalakshmi P U, Shanthi K and Selvam P 2019 Mater. Today Sustain. 5 100016
[16] Armaković S J, Savanović M M and Armaković S 2023 Catalysts 13 26
[17] Wang J, Guo R T, Bi Z X, Chen X, Hu X and Pan W G 2022 Nanoscale 14 11512
[18] Singh R and Dutta S 2018 Fuel 220 607
[19] Baig U, Uddin M K and Sajid M 2020 Mater. Today Commun. 25 101534
[20] Prakash J, Samriti, Kumar A, Dai H, Janegitz B C, Krishnan V, Swart H C and Sun S 2021 Mater. Today Sustain. 13 100066
[21] Li Y, Shen Q Q, Guan R F, Xue J B, Liu X G, Jia H S, Xu B S and Wu Y C 2020 J. Mater. Chem. C 8 1025
[22] Ji J, Liu B Y, Huang H, Wang X X, Yan L Y, Qu S J, Liu X, Jiang H R, Duan M J, Li Y F and Li M C 2021 J. Mater. Chem. C 9 7057
[23] Wang J T, Fu K, Zhang X Y, Yin Q J, Wei G and Su Z Q 2021 J. Mater. Chem. C 9 8466
[24] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M and Bahnemann D W 2014 Chem. Rev. 114 9919
[25] Xing M, Fang W, Nasir M, Ma Y, Zhang J and Anpo M 2013 J. Catal. 297 236
[26] Zhang J, Wu Y, Xing M, Leghari S A K and Sajjad S 2010 Energ. Environ. Sci. 3 715
[27] Etghani S A, Ansari E and Mohajerzadeh S 2019 Sci. Rep-Uk. 9 17943
[28] Zhong J, Chen F and Zhang J 2010 J. Phys. Chem. C 114 933
[29] Piątkowska A, Janus M, Szymański K and Mozia S 2021 Catalysts 11 144
[30] Umezawa N, Janotti A, Rinke P, Chikyow T and Van de Walle C G 2008 Appl. Phys. Lett. 92 041104
[31] Umebayashi T, Yamaki T, Itoh H and Asai K 2002 Appl. Phys. Lett. 81 454
[32] Huang Z, Gao Z, Gao S, Wang Q, Wang Z, Huang B and Dai Y 2017 Chin. J. Catal. 38 821
[33] Sharotri N and Sud D 2015 New J. Chem. 39 2217
[34] Bu X, Wang Y, Li J and Zhang C 2015 J. Alloys Compd. 628 20
[35] Lin Y H, Chou S H and Chu H 2014 J. Nanopart. Res. 16 2539
[36] Kovacic M, Perovic K, Papac J, Tomic A, Matoh L, Zener B, Brodar T, Capan I, Surca A K, Kusic H, Stangar U L and Loncaric Bozic A 2020 Materials (Basel) 13 1621
[37] Ramanathan R and Bansal V 2015 Rsc Adv. 5 1424
[38] El Nemr A, Helmy E T, Gomaa E A, Eldafrawy S and Mousa M 2019 J. Environ. Chem. Eng. 7 103385
[39] Shvadchina Y O, Cherepivskaya M K, Vakulenko V F, Sova A N, Stolyarova I V and Prikhodko R V 2016 J. Water Chem. Techno+. 37 283
[40] Zhang Q, Wang J, Yin S, Sato T and Saito F 2008 J. Am. Ceram. Soc. 87 1161
[41] Cui Y, Du H and Wen L 2009 Solid State Commun. 149 634
[42] Harb M, Sautet P and Raybaud P 2013 J. Phys. Chem. C 117 8892
[43] Chen Q, Liu M, He K and Li B 2014 Int. J. Photoenergy 2014 816234
[44] Jovanović D, Zagorac D, Matović B, Zarubica A and Zagorac J 2021 Acta Crystallographica Section B Structural Science, Acta Crystallogr. B 77 833
[45] Schleife A, Rinke P, Bechstedt F and Van de Walle C G 2013 J. Phys. Chem. C 117 4189
[46] Basera P, Saini S and Bhattacharya S 2019 J. Phys. Chem. C 7 14284
[47] Thatribud A 2019 Mater. Res. Express 6 095021
[48] Zhang Y Y, Gao W, Chen S, Xiang H and Gong X G 2015 Comp. Mater. Sci. 98 51
[49] Chen H Z, Zhang Y Y, Gong X and Xiang H 2014 J. Phys. Chem. C 118 2333
[50] Blochl P E 1994 Phys. Rev. B 50 17953
[51] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[52] Kresse G and Furthmuller J 1996 Comp. Mater. Sci. 6 15
[53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[54] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[55] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 78 1396
[56] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[57] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[58] Togo A and Tanaka I 2015 Scripta Mater. 108 1
[59] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[60] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[61] Barhoumi M, Said I, Yedukondalu N and Said M 2023 Results Phys. 48 106438
[62] Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A and Ceder G 2016 Sci. Adv. 2 e1600225
[63] Chiodo L, García-Lastra J M, Iacomino A, Ossicini S, Zhao J, Petek H and Rubio A 2010 Phys. Rev. B 82 045207
[64] Chen S and Wang L W 2012 Chem. Mater. 24 3659
[1] Phonon transport properties of Janus Pb2XAs(X = P, Sb, and Bi) monolayers: A DFT study
Jiaxin Geng(耿嘉鑫), Pei Zhang(张培), Zhunyun Tang(汤准韵), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2024, 33(4): 046501.
[2] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[3] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[4] Near-infrared photocatalysis based on upconversion nanomaterials
Xingyuan Guo(郭星原), Zhe Wang(王哲), Shengyan Yin(尹升燕), and Weiping Qin(秦伟平). Chin. Phys. B, 2022, 31(10): 108201.
[5] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[6] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[7] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[8] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[9] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[10] Carbon-nanodot-coverage-dependent photocatalytic performance of carbon nanodot/TiO2 nanocomposites under visible light
Ming-Ye Sun(孙明烨), You-Jin Zheng(郑友进), Lei Zhang(张蕾), Li-Ping Zhao(赵立萍), Bing Zhang(张冰). Chin. Phys. B, 2017, 26(5): 058101.
[11] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[12] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[13] Electronic structures of efficient MBiO3 (M = Li, Na, K, Ag) photocatalyst
Wen-Liu Zhou(周文流), Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2016, 25(3): 037102.
[14] Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood. Chin. Phys. B, 2015, 24(7): 076106.
[15] Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2
Li Xiao-Ping (李小平), Sun Shun-Ping (孙顺平), Yu Yun (于赟), Wang Hong-Jin (王洪金), Jiang Yong (江勇), Yi Dan-Qing (易丹青). Chin. Phys. B, 2015, 24(12): 120502.
No Suggested Reading articles found!