Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 087201    DOI: 10.1088/1674-1056/ad4a39
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process

Saqib Nawaz Khan1,2,3, Yan Wang(王燕)4, Lixiang Zhong(钟李祥)5, Huili Liang(梁会力)1,2, Xiaolong Du(杜小龙)1,2,3, and Zengxia Mei(梅增霞)1,2,†
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Songshan Lake Materials Laboratory, Dongguan 523808, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Beijing Hairou Laboratory, Beijing 101400, China;
5 School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  Inorganic Cs$_{2}$SnI$_{6}$ perovskite has exhibited substantial potential for light harvesting due to its exceptional optoelectronic properties and remarkable stability in ambient conditions. The charge transport characteristics within perovskite films are subject to modulation by various factors, including crystalline orientation, morphology, and crystalline quality. Achieving preferred crystalline orientation and film morphology via a solution-based process is challenging for Cs$_{2}$SnI$_{6}$ films. In this work, we employed thiourea as an additive to optimize crystal orientation, enhance film morphology, promote crystallization, and achieve phase purity. Thiourea lowers the surface energy of the (222) plane along the $\langle 111\rangle$ direction, confirmed by x-ray diffraction, x-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy studies, and density functional theory calculations. Varying thiourea concentration enables a bandgap tuning of Cs$_{2}$SnI$_{6}$ from 1.52 eV to 1.07 eV. This approach provides a novel method for utilizing Cs$_{2}$SnI$_{6}$ films in high-performance optoelectronic devices.
Keywords:  Cs$_{2}$SnI$_{6}$      crystalline orientation      Lewis acid-case      additive engineering      bandgap engineering  
Received:  01 March 2024      Revised:  30 April 2024      Accepted manuscript online: 
PACS:  72.80.Jc (Other crystalline inorganic semiconductors)  
  87.15.nt (Crystallization)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  68.55.-a (Thin film structure and morphology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174275, 62174113, 61874139, 61904201, and 11875088) and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019B1515120057).
Corresponding Authors:  Zengxia Mei     E-mail:  zxmei@iphy.ac.cn

Cite this article: 

Saqib Nawaz Khan, Yan Wang(王燕), Lixiang Zhong(钟李祥), Huili Liang(梁会力), Xiaolong Du(杜小龙), and Zengxia Mei(梅增霞) Effect of Lewis acid-base additive on lead-free Cs2SnI6 thin film prepared by direct solution coating process 2024 Chin. Phys. B 33 087201

[1] Guo F, Lu Z, Mohanty D, Wang T, Bhat I B, Zhang S, Shi S, Washington M A, Wang G C and Lu T M 2017 Mater. Res. Lett. 5 540
[2] Kapil G, Ohta T, Koyanagi T, Vigneshwaran M, Zhang Y, Ogomi Y, Pandey S S, Yoshino K, Shen Q, Toyoda T, Rahman M M, Minemoto T, Murakami T N, Segawa H and Hayase S 2017 J. Phys. Chem. C 121 13092
[3] Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J and Kanatzidis M G 2017 Sol. Energy Mater. Sol. Cells 159 227
[4] Ullah S, Wang J, Yang P, Liu L, Khan J, Yang S E, Xia T, Guo H and Chen Y 2021 Sol. RRL 5 2000830
[5] Yang X, Wang Y, Jiang J, Li M, Tang Z, Cai H, Zhang F and Wu X 2020 APL Mater. 8 021102
[6] Dang T C, Le H C, Pham D L, Nguyen S H, Nguyen T T O, Nguyen T T and Nguyen T D 2019 J. Alloys Compd. 805 847
[7] Huang J, Dong C, Mei Y, Lu X, Yue G, Gao Y, Liu R, Zhang W and Tan F 2021 J. Mater. Chem. C 9 14217
[8] Lee B, Krenselewski A, Baik S I, Seidman D N and Chang R P H 2017 Sustain. Energy & Fuels 1 710
[9] Liu A, Zhu H, Reo Y, Kim M G, Chu H Y, Lim J H, Kim H J, Ning W, Bai S and Noh Y Y 2022 Cell Rep. Phys. Sci. 3 100812
[10] Niu G, Yu H, Li J, Wang D and Wang L 2016 Nano Energy 27 87
[11] Zhang G, Zhang J, Liao Y, Pan Z, Rao H and Zhong X 2022 Chem. Eng. J. 440 135710
[12] Zhang Y, Ma Y, Wang Y, Zhang X, Zuo C, Shen L and Ding L 2021 Adv. Mater. 33 e200669
[13] Han X, Liang J, Yang J H, Soni K, Fang Q, Wang W, Zhang J, Jia S, Martí A A, Zhao Y and Lou J 2019 Small 15 1901650
[14] Krishnaiah M, Kim S, Kumar A, Mishra D, Seo S G and Jin S H 2022 Adv. Mater. 34 2109673
[15] Nairui X, Yehua T, Yali Q, Duoduo L and Ke-Fan W 2020 Sol. Energy 204 429
[16] Shao D, Zhu W, Xin G, Liu X, Wang T, Shi S, Lian J and Sawyer S 2020 J. Mat. Chem. C 8 1819
[17] Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P and Deng Z 2016 Chem. Mater. 28 8132
[18] Kumar J, Srivastava P and Bag M 2022 Front. Chem. 10 842924
[19] Zheng D, Raffin F, Volovitch P and Pauporté T 2022 Nat. Commun. 13 6655
[20] Konstantakou M, Perganti D, Falaras P and Stergiopoulos T 2017 Crystals 7 291
[21] Yan Y, Yang Y, Liang M, Abdellah M, Pullerits T, Zheng K and Liang Z 2021 Nat. Commun. 12 6603
[22] Hsieh C M, Liao Y S, Lin Y R, Chen C P, Tsai C M, Wei-Guang Diau E and Chuang S C 2018 RSC Adv. 8 19610
[23] Ko S G, Ryu G I, Kim B, Cha G J, Ri J H, Sonu G S and Kim U C 2019 Sol. Energy Mater. Sol. Cells 196 105
[24] Wang S, Ma Z, Liu B, Wu W, Zhu Y, Ma R and Wang C 2018 Sol. RRL 2 1800034
[25] Yu S K, Xu N N, Jiang M, Weng Y G, Zhu Q Y and Dai J 2020 Inorg. Chem. 59 15842
[26] Aming L and Yiyang S 2021 J. Inorg. Mater. 37 691
[27] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[28] Blochl P E 1994 Phys. Rev. B 50 17953
[29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[30] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[31] Matussin S N, Rahman A and Khan M M 2022 Front. Chem. 10 881518
[32] Wu B, Yuan H, Xu Q, Steele J A, Giovanni D, Puech P, Fu J, Ng Y F, Jamaludin N F, Solanki A, Mhaisalkar S, Mathews N, Roeffaers M B J, Grätzel M, Hofkens J and Sum T C 2019 Nat. Commun. 10 484
[33] Ye S, Rao H, Zhao Z, Zhang L, Bao H, Sun W, Li Y, Gu F, Wang J, Liu Z, Bian Z and Huang C 2017 J. Am. Chem. Soc. 139 7504
[34] Singh A, Najman S, Mohapatra A, Lu Y J, Hanmandlu C, Pao C W, Chen Y F, Lai C S and Chu C W 2020 ACS App. Mater. Interfaces 12 32649
[35] Chen C, Li F, Zhu L, Shen Z, Weng Y, Lou Q, Tan F, Yue G, Huang Q and Wang M 2020 Nano Energy 68 104313
[36] Wu Z, Jiang M, Liu Z, Jamshaid A, Ono L K and Qi Y 2020 Adv. Energy Mater. 10 1903696
[37] Chen Q, Wang C, Li Y and Chen L 2020 J. Am. Chem. Soc. 142 18281
[38] Mao L, Kennard R M, Traore B, Ke W, Katan C, Even J, Chabinyc M L, Stoumpos C C and Kanatzidis M G 2019 Chem 5 2593
[39] Wu J, Liu S C, Li Z, Wang S, Xue D J, Lin Y and Hu J S 2021 Natl. Sci. Rev. 8 047
[1] Prediction of a monolayer spin-spiral semiconductor: CoO with a honeycomb lattice
Jie Zhang(张杰), Shunuo Song(宋姝诺), Yan-Fang Zhang(张艳芳),Yu-Yang Zhang(张余洋), Sokrates T. Pantelides, and Shixuan Du(杜世萱). Chin. Phys. B, 2023, 32(8): 087508.
[2] Germanene nanomeshes:Cooperative effects of degenerate perturbation and uniaxial strain on tuning bandgap
Yan Su(苏燕), Xinyu Fan(范新宇). Chin. Phys. B, 2017, 26(10): 108101.
[3] Difference in magnetic properties between Co-doped ZnO powder and thin film
Liu Xue-Chao(刘学超), Shi Er-Wei(施尔畏), Chen Zhi-Zhan(陈之战), Zhang Hua-Wei(张华伟), Zhang Tao(张涛), and Song Li-Xin(宋力昕). Chin. Phys. B, 2007, 16(6): 1770-1775.
No Suggested Reading articles found!