Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044203    DOI: 10.1088/1674-1056/ad1e6a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions

Yun-Feng Shen(沈云峰)1, Xiao-Fang Xu(许孝芳)1,2,†, Ming Sun(孙铭)1, Wen-Ji Zhou(周文佶)1, and Ya-Jing Chang(常雅箐)1
1 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China;
2 School of Optical and Electronic Information, Suzhou City University & Suzhou Key Laboratory of Biophotonics, Suzhou 215104, China
Abstract  We present a stable valley photonic crystal (VPC) unit cell with C3v symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry. Based on this unit cell structure, topological edge states (TESs) and topological corner states (TCSs) are realized. We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals (PCs). The constructed beam splitter structure is compact and possesses frequency separation functions. In addition, we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners, comparing its corner states with those formed by other boundaries. Based on this, we explore the regularities of the electric field patterns of TESs and TCSs, explain the connection between the characteristic frequencies and locality of TCSs, which helps better control photons and ensures low power consumption of the system.
Keywords:  valley photonic crystal      topological edge states      topological corner states      higher-order topological insulators      topological phase transition  
Received:  17 November 2023      Revised:  11 January 2024      Accepted manuscript online:  15 January 2024
PACS:  42.70.Qs (Photonic bandgap materials)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the Suzhou Basic Research Project (Grant No. SJC2023003) and Suzhou City University National Project Pre-research Project (Grant No. 2023SGY014).
Corresponding Authors:  Xiao-Fang Xu     E-mail:  xiaofangxu@aliyun.com

Cite this article: 

Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐) Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions 2024 Chin. Phys. B 33 044203

[1] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Deng F, Sun Y, Wang X, Xue R, Li Y, Jiang H, Shi Y, Chang K and Chen H 2014 Opt. Express 22 23605
[4] Tzuhsuan M and Gennady S 2017 Phys. Rev. B 95 165102
[5] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298
[6] Z Yu, H Lin, R Zhou, Z Li, Z Mao, K Peng, Y Liu and X Shi 2022 J. Appl. Phys. 132 163101
[7] Zhao Y L, Liang F, Han J F, Wang X R, Zhao D S and Wang B Z 2022 Opt. Express 30 40515
[8] Ma T and Shvets G 2016 New J. Phys. 18 025012
[9] He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L and Dong J W 2019 Nat. Commun. 10 872
[10] Chen X D, Zhao F L, Chen M and Dong J W 2017 Phys. Rev. B 96 020202
[11] Shalaev M I, Walasik W, Xu A, Tsukernik Y and Litchinitser N M 2019 Nat. Nanotechnol. 14 31
[12] Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G and Zhang B L 2018 Nat. Phys. 14 140
[13] Yang Y H, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T and Singh R 2020 Nat. Photon. 14 446
[14] Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q and Dong J W 2018 Phys. Rev. Appl. 10 044002
[15] Makwana M, Craster R and Guenneau S 2019 Opt. Express 27 16088
[16] Wang Z X and Fang Y T 2022 Physica E 142 115240
[17] Zhao Y L, Liang F, Wang X R, Zhao D S and Wang B Z 2022 J. Phys. D:Appl. Phys. 55 155102
[18] Liu J C and Fang Y T 2022 Physica E 144 115451
[19] Wang X R, Fei H M, Lin H, Wu M, Kang L J, Zhang M D, Liu X, Yang Y B and Xiao L T 2023 Chin. Phys. B 32 074205
[20] Wei G C, Liu Z Z, Wu H Z, Wang L C, Wang S X and Xiao J J 2022 Opt. Lett. 47 3007
[21] Wan X, Peng C Y, Li G, Yang J H and Qi X Y 2023 Chin. Phys. B 32 114208
[22] Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q and Zhai N 2021 Opt. Commun. 498 127262
[23] Sui W J, Zhang Y, Zhang Z R, ZhangH F, Shi Q, Lv Z T and Yang B 2023 Opt. Commun. 527 128972
[24] Yao L C, Hsieh K H, Chiu S C, Li H K, Huo S Y and Fu C M 2023 J. Phys.:Condens. Matter 35 205701
[25] Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H and Chen Y F 2018 Phys. Rev. B 98 205147
[26] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697
[27] Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G and Huber S D 2018 Nature 555 342
[28] Yue Z, Liao D, Zhang Z, Xiong W, Cheng Y and Liu X 2021 Appl. Phys. Lett. 118 203501
[29] Chen X D, Shi F L, Liu J W, Shen K, He X T, Chan C T, Chen W J and Dong J W 2023 Natl. Sci. Rev. 10 nwac289
[30] He Y H, Gao Y F, He Y, Qi X F, Si J Q, Yang M and Zhou S Y 2023 Opt. Laser Technol. 161 109196
[31] Phan H T, Liu F and Wakabayashi K 2021 Opt. Express 29 18277
[32] He Y, Gao Y F, Yang M, Yan Z G, He Y H, Qi X F and Liu Z R 2023 Opt. Mater. 140 113830
[33] Shao S, Liang L, Hu J H, Poo Y and Wang H X 2023 Opt. Express 31 17695
[34] O K H and Kim K H 2023 Photon. Nanostruct. Fundam. Appl. 54 101118
[35] Zhang Z S, Li F, Lu J Y, Liu T, Heng X B, He Y C, Liang H H, Gan J L and Yang Z 2020 Nanophotonics 9 2839
[36] Cheng Q, Wang S, Lv J and Liu N 2022 Opt. Express 30 10792
[37] Wu X X, Yan M, Tian J X, Huang Y Z, Hong X, Han D Z and Wen W J 2017 Nat. Commun. 8 1304
[38] Zhao R, Xie G D, Chen M L N, Lan Z H, Huang Z X and Sha W E I 2020 Opt. Express 28 4638
[39] Yang J K, Hwang Y and Oh S S 2021 Phys. Rev. Res. 3 L022025
[1] Emergent topological ordered phase for the Ising-XY model revealed by cluster-updating Monte Carlo method
Heyang Ma(马赫阳), Wanzhou Zhang(张万舟), Yanting Tian(田彦婷), Chengxiang Ding(丁成祥), and Youjin Deng(邓友金). Chin. Phys. B, 2024, 33(4): 040503.
[2] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[5] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[6] High-performance chiral all-optical OR logic gate based on topological edge states of valley photonic crystal
Xiaorong Wang(王晓蓉), Hongming Fei(费宏明), Han Lin(林瀚), Min Wu(武敏), Lijuan Kang(康丽娟), Mingda Zhang(张明达), Xin Liu(刘欣), Yibiao Yang(杨毅彪), and Liantuan Xiao(肖连团). Chin. Phys. B, 2023, 32(7): 074205.
[7] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[8] Tailoring topological corner states in photonic crystals by near- and far-field coupling effects
Zhao-Jian Zhang(张兆健), Zhi-Hao Lan(兰智豪), Huan Chen(陈欢), Yang Yu(于洋), and Jun-Bo Yang(杨俊波). Chin. Phys. B, 2023, 32(12): 124201.
[9] Topological resonators based on hexagonal-star valley photonic crystals
Xin Wan(万鑫), Chenyang Peng(彭晨阳), Gang Li(李港), Junhao Yang(杨俊豪), and Xinyuan Qi(齐新元). Chin. Phys. B, 2023, 32(11): 114208.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[13] Quantum transport signatures of non-trivial topological edge states in a ring-shaped Su-Schrieffer-Heeger double-chain system
Cheng-Zhi Ye(叶成芝), Lan-Yun Zhang(张蓝云), and Hai-Bin Xue(薛海斌). Chin. Phys. B, 2022, 31(2): 027304.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
No Suggested Reading articles found!