ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions |
Yun-Feng Shen(沈云峰)1, Xiao-Fang Xu(许孝芳)1,2,†, Ming Sun(孙铭)1, Wen-Ji Zhou(周文佶)1, and Ya-Jing Chang(常雅箐)1 |
1 School of Mechanical Engineering, Jiangsu University, Zhenjiang 212000, China; 2 School of Optical and Electronic Information, Suzhou City University & Suzhou Key Laboratory of Biophotonics, Suzhou 215104, China |
|
|
Abstract We present a stable valley photonic crystal (VPC) unit cell with C3v symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry. Based on this unit cell structure, topological edge states (TESs) and topological corner states (TCSs) are realized. We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals (PCs). The constructed beam splitter structure is compact and possesses frequency separation functions. In addition, we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners, comparing its corner states with those formed by other boundaries. Based on this, we explore the regularities of the electric field patterns of TESs and TCSs, explain the connection between the characteristic frequencies and locality of TCSs, which helps better control photons and ensures low power consumption of the system.
|
Received: 17 November 2023
Revised: 11 January 2024
Accepted manuscript online: 15 January 2024
|
PACS:
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.81.Dp
|
(Propagation, scattering, and losses; solitons)
|
|
Fund: Project supported by the Suzhou Basic Research Project (Grant No. SJC2023003) and Suzhou City University National Project Pre-research Project (Grant No. 2023SGY014). |
Corresponding Authors:
Xiao-Fang Xu
E-mail: xiaofangxu@aliyun.com
|
Cite this article:
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐) Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions 2024 Chin. Phys. B 33 044203
|
[1] Lu L, Joannopoulos J D and Soljačić M 2014 Nat. Photon. 8 821 [2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [3] Deng F, Sun Y, Wang X, Xue R, Li Y, Jiang H, Shi Y, Chang K and Chen H 2014 Opt. Express 22 23605 [4] Tzuhsuan M and Gennady S 2017 Phys. Rev. B 95 165102 [5] Dong J W, Chen X D, Zhu H, Wang Y and Zhang X 2017 Nat. Mater. 16 298 [6] Z Yu, H Lin, R Zhou, Z Li, Z Mao, K Peng, Y Liu and X Shi 2022 J. Appl. Phys. 132 163101 [7] Zhao Y L, Liang F, Han J F, Wang X R, Zhao D S and Wang B Z 2022 Opt. Express 30 40515 [8] Ma T and Shvets G 2016 New J. Phys. 18 025012 [9] He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L and Dong J W 2019 Nat. Commun. 10 872 [10] Chen X D, Zhao F L, Chen M and Dong J W 2017 Phys. Rev. B 96 020202 [11] Shalaev M I, Walasik W, Xu A, Tsukernik Y and Litchinitser N M 2019 Nat. Nanotechnol. 14 31 [12] Gao F, Xue H R, Yang Z J, Lai K F, Yu Y, Lin X, Chong Y D, Shvets G and Zhang B L 2018 Nat. Phys. 14 140 [13] Yang Y H, Yamagami Y, Yu X, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T and Singh R 2020 Nat. Photon. 14 446 [14] Chen X D, Shi F L, Liu H, Lu J C, Deng W M, Dai J Y, Cheng Q and Dong J W 2018 Phys. Rev. Appl. 10 044002 [15] Makwana M, Craster R and Guenneau S 2019 Opt. Express 27 16088 [16] Wang Z X and Fang Y T 2022 Physica E 142 115240 [17] Zhao Y L, Liang F, Wang X R, Zhao D S and Wang B Z 2022 J. Phys. D:Appl. Phys. 55 155102 [18] Liu J C and Fang Y T 2022 Physica E 144 115451 [19] Wang X R, Fei H M, Lin H, Wu M, Kang L J, Zhang M D, Liu X, Yang Y B and Xiao L T 2023 Chin. Phys. B 32 074205 [20] Wei G C, Liu Z Z, Wu H Z, Wang L C, Wang S X and Xiao J J 2022 Opt. Lett. 47 3007 [21] Wan X, Peng C Y, Li G, Yang J H and Qi X Y 2023 Chin. Phys. B 32 114208 [22] Xu X F, Huang J Y, Zhang H, Guo X Y, Mu S S, Liu Y Q and Zhai N 2021 Opt. Commun. 498 127262 [23] Sui W J, Zhang Y, Zhang Z R, ZhangH F, Shi Q, Lv Z T and Yang B 2023 Opt. Commun. 527 128972 [24] Yao L C, Hsieh K H, Chiu S C, Li H K, Huo S Y and Fu C M 2023 J. Phys.:Condens. Matter 35 205701 [25] Xie B Y, Wang H F, Wang H X, Zhu X Y, Jiang J H, Lu M H and Chen Y F 2018 Phys. Rev. B 98 205147 [26] Hassan A E, Kunst F K, Moritz A, Andler G, Bergholtz E J and Bourennane M 2019 Nat. Photon. 13 697 [27] Serra-Garcia M, Peri V, Susstrunk R, Bilal O R, Larsen T, Villanueva L G and Huber S D 2018 Nature 555 342 [28] Yue Z, Liao D, Zhang Z, Xiong W, Cheng Y and Liu X 2021 Appl. Phys. Lett. 118 203501 [29] Chen X D, Shi F L, Liu J W, Shen K, He X T, Chan C T, Chen W J and Dong J W 2023 Natl. Sci. Rev. 10 nwac289 [30] He Y H, Gao Y F, He Y, Qi X F, Si J Q, Yang M and Zhou S Y 2023 Opt. Laser Technol. 161 109196 [31] Phan H T, Liu F and Wakabayashi K 2021 Opt. Express 29 18277 [32] He Y, Gao Y F, Yang M, Yan Z G, He Y H, Qi X F and Liu Z R 2023 Opt. Mater. 140 113830 [33] Shao S, Liang L, Hu J H, Poo Y and Wang H X 2023 Opt. Express 31 17695 [34] O K H and Kim K H 2023 Photon. Nanostruct. Fundam. Appl. 54 101118 [35] Zhang Z S, Li F, Lu J Y, Liu T, Heng X B, He Y C, Liang H H, Gan J L and Yang Z 2020 Nanophotonics 9 2839 [36] Cheng Q, Wang S, Lv J and Liu N 2022 Opt. Express 30 10792 [37] Wu X X, Yan M, Tian J X, Huang Y Z, Hong X, Han D Z and Wen W J 2017 Nat. Commun. 8 1304 [38] Zhao R, Xie G D, Chen M L N, Lan Z H, Huang Z X and Sha W E I 2020 Opt. Express 28 4638 [39] Yang J K, Hwang Y and Oh S S 2021 Phys. Rev. Res. 3 L022025 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|