Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving |
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波)† |
1 School of Science, Xuchang University, Xuchang 461000, China |
|
|
Abstract Optimal creation of photon Fock states is of importance for quantum information processing and state engineering. Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. A transmon qubit is dispersively coupled to a quantized electrical field. We address a $\Lambda $ -configuration interaction between the composite system and classical drivings. Based on two Gaussian-shaped drivings, a single-photon Fock state can be generated adiabatically. Instead of adding an auxiliary counterdiabatic driving, our concern is to modify these two Rabi drivings in the framework of shortcut to adiabaticity. Thus an accelerated operation with high efficiency can be realized in a much shorter time. Compared with the adiabatic counterpart, the shortcut-based operation is significantly insusceptible to decoherence effects. The scheme could offer a promising way to deterministically prepare photon Fock states with superconducting quantum circuits.
|
Received: 26 October 2020
Revised: 17 January 2021
Accepted manuscript online: 03 February 2021
|
PACS:
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
32.80.Xx
|
(Level crossing and optical pumping)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the Key Research Project in Universities of Henan Province, China (Grant Nos. 19A140016 and 20B140016), the Natural Science Foundation of Henan Province, China (Grant Nos. 212300410388 and 212300410238), and the "316" Project Plan of Xuchang University. |
Corresponding Authors:
†Corresponding author. E-mail: zbfeng010@163.com
|
Cite this article:
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波) Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving 2021 Chin. Phys. B 30 044214
|
1 Law C K and Eberly J H 1996 Phys. Rev. Lett. 76 1055 2 Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325 3 Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786 4 Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357 5 Clarke J and Wilhelm F K 2008 Nature 453 1031 6 You J Q and Nori F 2011 Nature 474 589 7 Feng Z B 2015 Phys. Rev. A 91 032307 8 Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401 9 Martinis J M, Devoret M H and Clarke J 2020 Nat. Phys. 16 234 10 Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 11 Haroche S, Brune M and Raimond J M 2020 Nat. Phys. 16 243 12 Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329 13 Feng Z B, Yan R Y and Zhou Y Q 2013 Quantum Inf. Process. 12 1429 14 Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517 15 Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1 16 Wendin G 2017 Rep. Prog. Phys. 80 106001 17 Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247 18 Yan R Y and Feng Z B 2020 Adv. Quantum Technol. 3 2000088 19 Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M and Cleland A N 2008 Nature 454 310 20 Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401 21 Zakka-Bajjani E, Nguyen F, Lee M, Vale L R, Simmonds R W and Aumentado J 2011 Nat. Phys. 7 599 22 Ji Y H and Hu J J 2014 Chin. Phys. B 23 040307 23 Krastanov S, Albert V V, Shen C, Zou C L, Heeres R W, Vlastakis B, Schoelkopf R J and Jiang L 2015 Phys. Rev. A 92 040303 24 Heeres R W, Vlastakis B, Holland E, Krastanov S, Albert V V, Frunzio L, Jiang L and Schoelkopf R J 2015 Phys. Rev. Lett. 115 137002 25 Wang W, Hu L, Xu Y, Liu K, Ma Y, Zheng S B, Vijay R, Song Y P, Duan L M and Sun L 2017 Phys. Rev. Lett. 118 223604 26 Premaratne S P, Wellstood F C and Palmer B S 2017 Nat. Commun. 8 14148 27 Torrontegui E, Ibá\ nez S, Mart\'ínez-Garaot S, Modugno M, Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117 28 Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Mart\'ínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 29 Zhang J, Kyaw T H, Tong D M, Sjöqvist E and Kwek L C 2015 Sci. Rep. 5 18414 30 Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301 31 Zhang Z, Wang T, Xiang L, Yao J, Wu J and Yin Y 2017 Phys. Rev. A 95 042345 32 Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2017 New J. Phys. 19 123023 33 Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Cai W, Gong Z, Zong Z, Wu M, Wu J, Sun L, Yin Y and Guo G 2018 New J. Phys. 20 065003 34 Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351 35 Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Zong Z, Sun Z, Dong Z, Wu J, Yin Y and Guo G 2019 Phys. Rev. Applied 11 034030 36 Yan T, Liu B J, Xu K, Song C, Liu S, Zhang Z, Deng H, Yan Z, Rong H, Huang K, Yung M H, Chen Y and Yu D 2019 Phys. Rev. Lett. 122 080501 37 A Vepsäläinen and Paraoanu G S 2020 Adv. Quantum Technol. 3 1900121 38 Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X and Yu Y 2020 Phys. Rev. Applied 13 064012 39 Chen X and Muga J G 2012 Phys. Rev. A 86 033405 40 Berry M V 2009 J. Phys. A: Math. Theor. 42 365303 41 Masuda S and Nakamura K 2008 Phys. Rev. A 78 062108 42 Feng Z B, Lu X J, Yan R Y and Zhao Z Y 2018 Sci. Rep. 8 9310 43 Yan R Y and Feng Z B 2020 Quantum Sci. Technol. 5 045001 44 Chen X, Lizuain I, Ruschhaupt A, Gùery-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003 45 Shi X and Wei L F 2015 Laser Phys. Lett. 12 015204 46 Yan R Y, Feng Z B, Li M, Zhang C L and Zhao Z Y 2020 Ann. Phys. (Berlin) 532 1900613 47 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319 48 Vitanov N V and Stenholm S 1997 Phys. Rev. A 55 648 49 Li Y C and Chen X 2016 Phys. Rev. A 94 063411 50 Yan R Y, Yang F, Zhang N and Feng Z B 2018 Quantum Inf. Process. 17 237 51 Strand J D, Ware M, Beaudoin F, Ohki T A, Johnson B R, Blais A and Plourde B L T 2013 Phys. Rev. B 87 220505 52 Yan R Y, Li M, Zhao Z Y, Lu X J and Feng Z B 2018 Laser Phys. Lett. 15 015210 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|