Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 044214    DOI: 10.1088/1674-1056/abe297
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving

Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波)
1 School of Science, Xuchang University, Xuchang 461000, China
Abstract  Optimal creation of photon Fock states is of importance for quantum information processing and state engineering. Here an efficient strategy is presented for speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving. A transmon qubit is dispersively coupled to a quantized electrical field. We address a $\Lambda $ -configuration interaction between the composite system and classical drivings. Based on two Gaussian-shaped drivings, a single-photon Fock state can be generated adiabatically. Instead of adding an auxiliary counterdiabatic driving, our concern is to modify these two Rabi drivings in the framework of shortcut to adiabaticity. Thus an accelerated operation with high efficiency can be realized in a much shorter time. Compared with the adiabatic counterpart, the shortcut-based operation is significantly insusceptible to decoherence effects. The scheme could offer a promising way to deterministically prepare photon Fock states with superconducting quantum circuits.
Keywords:  photon Fock state      superconducting circuit      counterdiabatic driving  
Received:  26 October 2020      Revised:  17 January 2021      Accepted manuscript online:  03 February 2021
PACS:  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  32.80.Xx (Level crossing and optical pumping)  
  85.25.-j (Superconducting devices)  
Fund: Project supported by the Key Research Project in Universities of Henan Province, China (Grant Nos. 19A140016 and 20B140016), the Natural Science Foundation of Henan Province, China (Grant Nos. 212300410388 and 212300410238), and the "316" Project Plan of Xuchang University.
Corresponding Authors:  Corresponding author. E-mail: zbfeng010@163.com   

Cite this article: 

Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波) Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving 2021 Chin. Phys. B 30 044214

1 Law C K and Eberly J H 1996 Phys. Rev. Lett. 76 1055
2 Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
3 Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
4 Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
5 Clarke J and Wilhelm F K 2008 Nature 453 1031
6 You J Q and Nori F 2011 Nature 474 589
7 Feng Z B 2015 Phys. Rev. A 91 032307
8 Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401
9 Martinis J M, Devoret M H and Clarke J 2020 Nat. Phys. 16 234
10 Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
11 Haroche S, Brune M and Raimond J M 2020 Nat. Phys. 16 243
12 Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
13 Feng Z B, Yan R Y and Zhou Y Q 2013 Quantum Inf. Process. 12 1429
14 Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517
15 Gu X, Kockum A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718-719 1
16 Wendin G 2017 Rep. Prog. Phys. 80 106001
17 Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247
18 Yan R Y and Feng Z B 2020 Adv. Quantum Technol. 3 2000088
19 Hofheinz M, Weig E M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Wang H, Martinis J M and Cleland A N 2008 Nature 454 310
20 Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N and Martinis J M 2008 Phys. Rev. Lett. 101 240401
21 Zakka-Bajjani E, Nguyen F, Lee M, Vale L R, Simmonds R W and Aumentado J 2011 Nat. Phys. 7 599
22 Ji Y H and Hu J J 2014 Chin. Phys. B 23 040307
23 Krastanov S, Albert V V, Shen C, Zou C L, Heeres R W, Vlastakis B, Schoelkopf R J and Jiang L 2015 Phys. Rev. A 92 040303
24 Heeres R W, Vlastakis B, Holland E, Krastanov S, Albert V V, Frunzio L, Jiang L and Schoelkopf R J 2015 Phys. Rev. Lett. 115 137002
25 Wang W, Hu L, Xu Y, Liu K, Ma Y, Zheng S B, Vijay R, Song Y P, Duan L M and Sun L 2017 Phys. Rev. Lett. 118 223604
26 Premaratne S P, Wellstood F C and Palmer B S 2017 Nat. Commun. 8 14148
27 Torrontegui E, Ibá\ nez S, Mart\'ínez-Garaot S, Modugno M, Campo A, Guéry-Odelin D, Ruschhaupt A, Chen X and Muga J G 2013 Adv. At. Mol. Opt. Phys. 62 117
28 Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Mart\'ínez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
29 Zhang J, Kyaw T H, Tong D M, Sjöqvist E and Kwek L C 2015 Sci. Rep. 5 18414
30 Xu J, Yu L, Wu J L and Ji X 2017 Chin. Phys. B 26 090301
31 Zhang Z, Wang T, Xiang L, Yao J, Wu J and Yin Y 2017 Phys. Rev. A 95 042345
32 Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2017 New J. Phys. 19 123023
33 Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Cai W, Gong Z, Zong Z, Wu M, Wu J, Sun L, Yin Y and Guo G 2018 New J. Phys. 20 065003
34 Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351
35 Wang T, Zhang Z, Xiang L, Jia Z, Duan P, Zong Z, Sun Z, Dong Z, Wu J, Yin Y and Guo G 2019 Phys. Rev. Applied 11 034030
36 Yan T, Liu B J, Xu K, Song C, Liu S, Zhang Z, Deng H, Yan Z, Rong H, Huang K, Yung M H, Chen Y and Yu D 2019 Phys. Rev. Lett. 122 080501
37 A Vepsäläinen and Paraoanu G S 2020 Adv. Quantum Technol. 3 1900121
38 Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X and Yu Y 2020 Phys. Rev. Applied 13 064012
39 Chen X and Muga J G 2012 Phys. Rev. A 86 033405
40 Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
41 Masuda S and Nakamura K 2008 Phys. Rev. A 78 062108
42 Feng Z B, Lu X J, Yan R Y and Zhao Z Y 2018 Sci. Rep. 8 9310
43 Yan R Y and Feng Z B 2020 Quantum Sci. Technol. 5 045001
44 Chen X, Lizuain I, Ruschhaupt A, Gùery-Odelin D and Muga J G 2010 Phys. Rev. Lett. 105 123003
45 Shi X and Wei L F 2015 Laser Phys. Lett. 12 015204
46 Yan R Y, Feng Z B, Li M, Zhang C L and Zhao Z Y 2020 Ann. Phys. (Berlin) 532 1900613
47 Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
48 Vitanov N V and Stenholm S 1997 Phys. Rev. A 55 648
49 Li Y C and Chen X 2016 Phys. Rev. A 94 063411
50 Yan R Y, Yang F, Zhang N and Feng Z B 2018 Quantum Inf. Process. 17 237
51 Strand J D, Ware M, Beaudoin F, Ohki T A, Johnson B R, Blais A and Plourde B L T 2013 Phys. Rev. B 87 220505
52 Yan R Y, Li M, Zhao Z Y, Lu X J and Feng Z B 2018 Laser Phys. Lett. 15 015210
[1] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[4] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[5] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[6] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[7] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[8] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[9] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
No Suggested Reading articles found!