INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors |
Kaiyan Zhang(张凯彦)1,2, Peng Song(宋朋)3,†, Fengcai Ma(马凤才)3, and Yuanzuo Li(李源作)1,2,‡ |
1 College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China; 2 College of Science, Northeast Forestry University, Harbin 150040, China; 3 Department of Physics, Liaoning University, Shenyang 110036, China |
|
|
Abstract The selection of photoactive layer materials for organic solar cells (OSCs) is essential for the photoelectric conversion process. It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis. However, there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions. Therefore in this study we utilize a chlorophyll derivative, Ce$_6$Me$_3$, as a donor material and investigate the performance of its heterojunction with acceptor materials. Through density functional theory, the photoelectric performances of acceptors, including the fullerene derivative PC$_{71}$BM and the terminal halogenated non-fullerene DTBCIC series, are compared in detail. It is found that DTBCIC-Cl has better planarity, light absorption, electron affinity, charge reorganization energy and charge mobility than others. Ce$_6$Me$_3$ has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties. Furthermore, the designed Ce$_6$Me$_3$/DTBCIC interfaces have improved charge separation and reorganization rates ($K_{\rm CS}/K_{\rm CR}$) compared with the Ce$_6$Me$_3$/PC$_{71}$BM interface. This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.
|
Received: 30 October 2023
Revised: 04 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
88.40.jr
|
(Organic photovoltaics)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074059, 11974152, and 11404055) and Heilongjiang Postdoctoral Fund (Grant No. LBH-Q21061). |
Corresponding Authors:
Peng Song, Yuanzuo Li
E-mail: songpeng@lnu.edu.cn;yzli@nefu.edu.cn
|
Cite this article:
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作) Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors 2024 Chin. Phys. B 33 068402
|
[1] He C L, Chen Z, Wang T H, Shen Z Q, Li Y K, Zhou J D, Yu J W, Fang H Y, Li Y H, Li S X, Lu X H, Ma W, Gao F, Xie Z Q, Coropceanu V, Zhu H M, Bredas J L, Zuo L J and Chen H Z 2022 Nat. Commun. 13 2598 [2] Guo Y, Han G C and Yi Y P 2022 Angew. Chem. Int. Ed. e202205975 [3] Li T F and Zhan X W 2021 Acta Chim. Sin. 79 257 [4] Che Y X, Niazi M R, Izquierdo R and Dmitrii F P 2021 Angew. Chem. Int. Ed. 60 24833 [5] Wang J Y and Zhan X W 2021 Acc. Chem. Res. 54 132 [6] Bifari E N, Almeida P and El-Shishtawy R M 2023 Mater. Today Energy 36 101337 [7] He C L, Pan Y W, Wu B H, Xia X X, Chen Z, Zhu H M, Ma C Q, Lu X H, Ma W, Lu G H, Zuo L J and Chen H Z 2022 Adv. Mater. 202203379 [8] Mahmood A and Wang J L 2021 Energy Environ. Sci. 14 90 [9] Piradi V, Yan F, Zhu X J and Wong W Y 2021 Mater. Chem. Front. 5 7119 [10] Liu X J, Shao Y Y, Lu T, Chang D P, Li M J and Lu W C 2022 Mater. Des. 216 110561 [11] Zhang Q, Zheng Y J, Sun W B, Ou Z P, Odunmbaku O, Li M, Chen S S, Zhou Y L, Li J, Qin B and Sun K 2022 Adv. Sci. 9 2104742 [12] Yang J, Li Q S and Li Z S 2021 Phys. Chem. Chem. Phys. 23 12321 [13] Greenstein B L and Hutchison G R 2022 J. Phys. Chem. Lett. 13 4235 [14] Zhao C C, Wang J X, Zhao X Y, Du Z L, Yang R Q and Tang J G 2021 Nanoscale 13 2181 [15] Yu G, Gao J and Hummelen J C 1995 Science 270 1789 [16] Alem S, de Bettignies R, Nunzi J M and Cariou M 2004 Appl. Phys. Lett. 84 2178 [17] Nguyen L H, Hoppe H, Erb T, Gunes S, Gobsch G and Sariciftci N S 2007 Adv. Funct. Mater. 17 1071 [18] Wang Y W, Wang X F, Zhang J P, Hong Z, Kido J, Kitao O, Ikeuchi T, Tamiaki H and Sasaki S 2012 J. Phys. Chem. C 116 21244 [19] Duan S N, Zhou Q, Dall’Agnese C X, Chen G, Wang X F, Tamiaki H, Sakai K, Ikeuchi T and Sasaki S 2019 Sol. RRL 3 1900203 [20] Duan S N, Zhou Q, Li AJ, Wang X F, Sasaki S and Tamiaki H 2020 Sol. RRL 4 2000162 [21] Duan S N, Song J X, Zhou E J, Yang K, Lu S R, Li D F, Sasaki S, Tamiaki H and Wang X F 2022 J. Phys. Chem. C 126 4807 [22] Yan C Q, Barlow S, Wang Z H, Yan H, Jen A K Y, Marder S R and Zhan X W 2018 Nat. Rev. Mater. 3 18003 [23] Ye L, Hu H W, Ghasemi M, Wang T H, Collins B A, Kim J H, Jiang K, Carpenter J H, Li H, Li Z K, McAfee T, Zhao J B, Chen X K, Lai J L Y, Ma T X, Bredas J L, Yan H and Ade H 2018 Nat. Mater. 17 253 [24] Liu W, Xu X, Yuan J, Leclerc M, Zou Y P and Li Y F 2021 ACS Energy Lett. 6 598 [25] Privado M, de la Cruz P, Malhotra P, Sharma G D and Langa F 2021 Sol. Energy 221 393 [26] UrRehman S, Anwer M, BiBi S, Jamil S, Yasin M, Khan S R, Nadeem R, Ali S and Jia R 2022 Mater. Sci. Semicond. Process. 140 106381 [27] Shao Y Y, Lu T, Li M J and Lu W C 2022 New J. Chem. 46 3370 [28] Ahmed S and Kalita D J 2020 Phys. Chem. Chem. Phys. 22 23586 [29] Gao W, Liu T, Ming R J, Luo Z H, Wu K L, Zhang L, Xin J M, Xie D J, Zhang G Y, Ma W, Yan H and Yang C L 2018 Adv. Funct. Mater. 28 1803128 [30] Ma X L, Wang J, Gao J H, Hu Z H, Xu C Y, Zhang X L and Zhang F J 2020 Adv. Energy Mater. 10 2001404 [31] Guo X, Fan Q P, Wu J N, Li G W, Peng Z X, Su W Y, Lin J, Hou L T, Qin Y P, Ade H, Ye L, Zhang M J and Li Y F 2021 Angew. Chem. Int. Ed. 60 2322 [32] Yu H, Qi Z Y, Zhang J Q, Wang Z, Sun R, Chang Y, Sun H L, Zhou W T, Min J, Ade H and Yan H 2020 J. Mater. Chem. A 8 23756 [33] Geng S Z, Yang W T, Gao J, Li S X, Shi M M, Lau T K, Lu X H, Li C Z and Chen H Z 2019 Chin. J. Polym. Sci. 37 1005 [34] Liu X Z, Wei Y N, Zhang X, Qin L Q, Wei Z X and Huang H 2021 Sci. China Chem. 64 228 [35] Wang S H, Duan S N, Wang Y W, Sun C L, Wang X F and Sasaki S 2019 J. Energy Chem. 38 88 [36] Tang Y X, Feng H X, Liang Y Y, Tang H R, Du Z R, Xu J X, Huang F and Cao Y 2021 ACS Appl. Polym. Mater. 5 2298 [37] Efrem A, Lim C J, Lu Y and Ng S C 2014 Tetrahedron Lett. 55 4849 [38] Li S X, Zhan L L, Zhao W C, Zhang S H, Ali B, Fu Z S, Lau T K, Lu X H, Shi M M, Li C Z, Hou J H and Chen H Z 2018 J. Mater. Chem. A 6 12132 [39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [40] Kohn W and Sham L 1965 Phys. Rev. 137 A1697 [41] Becke A D 1988 Phys. Rev. A 38 3098 [42] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785 [43] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [44] Mu X J, Wang X X, Quan J and Sun M T 2020 J. Phys. Chem. C 124 4968 [45] Schweda B, Reinfelds M, Hofinger J, Baumel G, Rath T, Kaschnitz P, Fischer R C, Flock M, Amenitsch H, Scharber M C and Trimmel G 2022 Chem. Eur. J. 28 e202200276 [46] Sun B Y, Ren X, Li J and Chen J N 2023 J. Phys. Chem. C 127 15346 [47] Gross E K U and Kohn W 1985 Phys. Rev. Lett. 55 2850 [48] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51 [49] Mattsson A E, Armiento R, Schultz P A and Mattsson T R 2006 Phys. Rev. B 73 195123 [50] Niu Y L, Li W Q, Peng Q, Geng H, Yi Y P, Wang LJ, Nan G J, Wang D and Shuai Z G 2018 Mol. Phys. 116 1078 [51] Nan G J, Yang X D, Wang L J, Shuai Z G and Zhao Y 2009 Phys. Rev. B 79 115203 [52] Shuai Z G, Geng H, Xu W, Liao Y and André J M 2014 Chem. Soc. Rev. 43 2662 [53] Shuai Z G, Wang D, Peng Q and Geng H 2014 Acc. Chem. Res. 47 3301 [54] Liu Z Y, Lu T and Chen Q X 2020 Carbon 165 468 [55] Li B, Cao B F, Zhou Q, Li Y, Bao Y J, Shi Y, Liu C L, Jin M X, Gao J B and Ding D J 2021 J. Mater. Chem. C 9 14388 [56] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision B01 [57] Lu T and Chen F W 2012 J. Comput. Chem. 33 580 [58] Lu T and Chen F W 2012 J. Mol. Graph. Model 38 314 [59] Pomogaeva A V, Scheer M and Timoshkin A Y 2018 Chem. Eur. J. 24 17046 [60] Zang Z F, Yu Y, Song P, Ma F C and Li Y Z 2023 J. Phys. Chem. C 127 110 [61] Zhang J and Lu T 2021 Phys. Chem. Chem. Phys. 23 20323 [62] Sirohi A, SanthiBhushan B and Srivastava A 2021 J. Mol. Model. 27 77 [63] Alexandre R A F, de Oliveira O V and dos Santos J D 2021 Chem. Phys. Lett. 766 138328 [64] Gai X W, Sheng H and Wang J A 2023 Phys. Chem. Chem. Phys. 25 20049 [65] Zhang K Y, Wei Z Q, Song P, Ma F C and Li Y Z 2022 Sol. Energy 248 160 [66] Nebbach D, Agda F, Kaya S, Siddique F, Lakhlifi T, Ajana M A and Bouachrine M 2022 J. Mol. Liq. 348 118289 [67] Aboulouard A, Mtougui S, Demir N, Moubarik A, El Idrissi M and Can M 2021 Synth. Met. 279 116846 [68] Zhou B, Hu Z, Jiang Y, He X, Sun Z and Sun H 2018 J. Phys.: Condens. Matter 30 215501 [69] Sun W, Bu Y and Wang Y 2014 Design and Applications of Nanomaterials for Sensors 16 31 [70] Lee J C, Chai J D and Lin S T 2015 RSC Adv. 5 101370 [71] Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065 [72] Marcus and Rudolph 1993 Rev. Mod. Phys. 65 599 [73] Calvo-Castro J, Mchugh C J and Mclean A J 2015 Dyes Pigm. 113 609 [74] Imahori H, Yamada H, Guldi D M, Shimomura A, Kundu S, Yamada K, Sakata Y and Fukuzumi S 2002 Angew. Chem. Int. Ed. 41 2344 [75] Koese M E, Mitchell W J, Kopidakis N, Chang C H, Shaheen S E, Kim K and Rumbles G 2007 J. Am. Chem. Soc. 129 14257 [76] Wang Q G, Zeng Z Y, Li Y Z and Chen X R 2020 Sol. Energy 208 10 [77] Li Y, Sasaki S, Tamiaki H, Liu C L, Song J X, Tian W J, Zheng E Q, Wei Y J, Chen G, Fu X Q and Wang X F 2015 J. Power Sources 297 519 [78] Han C Y, Wang J X, Chen L L, Chen J F, Zhou L, Wang P C, Shen W F, Zheng N, Wen S G, Li Y H and Bao X C 2021 Adv. Funct. Mater. 31 2107026 [79] Cui Y J, Zhu P P, Shi X L, Liao X F and Chen Y W 2021 J. Phys. Chem. C 125 10250 [80] Xu Y, Yao H F, Ma L J, Hong L, Li J Y, Liao Q, Zu Y F, Wang J W, Gao M Y, Ye L and Hou J H 2020 Angew. Chem. Int. Ed. 59 9004 [81] Shao Y Y, Lu T, Li M J and Lu W C 2022 New J. Chem. 46 3370 [82] Emelianova E V, van der Auweraer M and Bässler H 2008 J. Chem. Phys. 128 224709 [83] Zhen C G, Becker U and Kieffer J 2009 J. Phys. Chem. A 113 9707 [84] Kraner S, Prampolini G and Cuniberti G 2017 J. Phys. Chem. C 121 17088 [85] Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar M A, Baby R, Orfali R and Perveen S 2013 RSC Adv. 13 7237 [86] Zang Z F, Wang Q G, Song P, Ma F C and Li Y Z 2022 Sol. Energy 231 503 [87] Xiang C C, Zhao Q M, Liu W Q, Cao J M, Zou Y P and Zhou H 2022 J. Mater. Chem. A 10 25611 [88] Cave RJ and Newton MD 1996 Chem. Phys. Lett. 249 15 [89] Cossi M, Rega N, Scalmani G and Barone V 2003 J. Comput. Chem. 24 669 [90] Biswas S, Pramanik A, Pal S and Sarkar P 2017 J. Phys. Chem. C 121 2574 [91] Lemaur V, Steel M, Beljonne D, Bredas J L and Cornil J 2005 J. Am. Chem. Soc 127 6077 [92] Kose M E and Schanze K S 2020 J. Phys. Chem. A 124 9478 [93] Zhao H F, Yin H, Liu X C, Li H, Shi Y, Liu C L, Jin M X, Gao J B, Luo Y and Ding D J 2019 J. Phys. Chem. Lett. 10 3064 [94] Shen F G, Peng A D, Chen Y, Dong Y, Jiang Z W, Wang Y B, Fu H B and Yao J N 2008 J. Phys. Chem. A 112 2206 [95] Christians J A, Fung R C M and Kamat P V 2014 J. Am. Chem. Soc. 136 758 [96] Irfan A, Assiri M and Al-Sehemi AGJOE 2018 Org. Electron. 57 211 [97] Zhang W, Hu R, Zeng X K, Su X J, Chen Z F, Zou X S, Peng J, Zhang C Y and Yartsev A 2019 Polymers 11 408 [98] Zhu R, Li Q S and Li Z S 2019 J. Mater. Chem. A 7 16304 [99] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C L 2006 Adv. Mater. 18 789 [100] Street R A, Hawks S A, Khlyabich P P, Li G, Schwartz B J, Thompson B C and Yang Y 2014 J. Phys. Chem. C 118 21873 [101] Bijleveld J C, Verstrijden R A M, Wienk M M and Janssen R A J 2010 Appl. Phys. Lett. 97 073304 [102] Wu L N, Yin H, Li M Y, Sun G Y and Jin G D 2019 Comput. Theor. Chem. 1156 37 [103] Lu Q C, Wang Q G, Song P, Ma F C, Yang Y H and Li Y Z 2021 Sol. RRL 5 2100670 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|