Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068402    DOI: 10.1088/1674-1056/ad2a6a
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors

Kaiyan Zhang(张凯彦)1,2, Peng Song(宋朋)3,†, Fengcai Ma(马凤才)3, and Yuanzuo Li(李源作)1,2,‡
1 College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China;
2 College of Science, Northeast Forestry University, Harbin 150040, China;
3 Department of Physics, Liaoning University, Shenyang 110036, China
Abstract  The selection of photoactive layer materials for organic solar cells (OSCs) is essential for the photoelectric conversion process. It is well known that chlorophyll is an abundant pigment in nature and is extremely valuable for photosynthesis. However, there is little research on how to improve the efficiency of chlorophyll-based OSCs by matching chlorophyll derivatives with excellent non-fullerene acceptors to form heterojunctions. Therefore in this study we utilize a chlorophyll derivative, Ce$_6$Me$_3$, as a donor material and investigate the performance of its heterojunction with acceptor materials. Through density functional theory, the photoelectric performances of acceptors, including the fullerene derivative PC$_{71}$BM and the terminal halogenated non-fullerene DTBCIC series, are compared in detail. It is found that DTBCIC-Cl has better planarity, light absorption, electron affinity, charge reorganization energy and charge mobility than others. Ce$_6$Me$_3$ has good energy level matching and absorption spectral complementarity with the investigated acceptor molecules and also shows good electron donor properties. Furthermore, the designed Ce$_6$Me$_3$/DTBCIC interfaces have improved charge separation and reorganization rates ($K_{\rm CS}/K_{\rm CR}$) compared with the Ce$_6$Me$_3$/PC$_{71}$BM interface. This research provides a theoretical basis for the design of photoactive layer materials for chlorophyll-based OSCs.
Keywords:  organic solar cells      density functional theory      chlorophyll derivative      non-fullerene acceptors  
Received:  30 October 2023      Revised:  04 February 2024      Accepted manuscript online:  19 February 2024
PACS:  84.60.Jt (Photoelectric conversion)  
  88.40.jr (Organic photovoltaics)  
  88.40.hj (Efficiency and performance of solar cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074059, 11974152, and 11404055) and Heilongjiang Postdoctoral Fund (Grant No. LBH-Q21061).
Corresponding Authors:  Peng Song, Yuanzuo Li     E-mail:  songpeng@lnu.edu.cn;yzli@nefu.edu.cn

Cite this article: 

Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作) Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors 2024 Chin. Phys. B 33 068402

[1] He C L, Chen Z, Wang T H, Shen Z Q, Li Y K, Zhou J D, Yu J W, Fang H Y, Li Y H, Li S X, Lu X H, Ma W, Gao F, Xie Z Q, Coropceanu V, Zhu H M, Bredas J L, Zuo L J and Chen H Z 2022 Nat. Commun. 13 2598
[2] Guo Y, Han G C and Yi Y P 2022 Angew. Chem. Int. Ed. e202205975
[3] Li T F and Zhan X W 2021 Acta Chim. Sin. 79 257
[4] Che Y X, Niazi M R, Izquierdo R and Dmitrii F P 2021 Angew. Chem. Int. Ed. 60 24833
[5] Wang J Y and Zhan X W 2021 Acc. Chem. Res. 54 132
[6] Bifari E N, Almeida P and El-Shishtawy R M 2023 Mater. Today Energy 36 101337
[7] He C L, Pan Y W, Wu B H, Xia X X, Chen Z, Zhu H M, Ma C Q, Lu X H, Ma W, Lu G H, Zuo L J and Chen H Z 2022 Adv. Mater. 202203379
[8] Mahmood A and Wang J L 2021 Energy Environ. Sci. 14 90
[9] Piradi V, Yan F, Zhu X J and Wong W Y 2021 Mater. Chem. Front. 5 7119
[10] Liu X J, Shao Y Y, Lu T, Chang D P, Li M J and Lu W C 2022 Mater. Des. 216 110561
[11] Zhang Q, Zheng Y J, Sun W B, Ou Z P, Odunmbaku O, Li M, Chen S S, Zhou Y L, Li J, Qin B and Sun K 2022 Adv. Sci. 9 2104742
[12] Yang J, Li Q S and Li Z S 2021 Phys. Chem. Chem. Phys. 23 12321
[13] Greenstein B L and Hutchison G R 2022 J. Phys. Chem. Lett. 13 4235
[14] Zhao C C, Wang J X, Zhao X Y, Du Z L, Yang R Q and Tang J G 2021 Nanoscale 13 2181
[15] Yu G, Gao J and Hummelen J C 1995 Science 270 1789
[16] Alem S, de Bettignies R, Nunzi J M and Cariou M 2004 Appl. Phys. Lett. 84 2178
[17] Nguyen L H, Hoppe H, Erb T, Gunes S, Gobsch G and Sariciftci N S 2007 Adv. Funct. Mater. 17 1071
[18] Wang Y W, Wang X F, Zhang J P, Hong Z, Kido J, Kitao O, Ikeuchi T, Tamiaki H and Sasaki S 2012 J. Phys. Chem. C 116 21244
[19] Duan S N, Zhou Q, Dall’Agnese C X, Chen G, Wang X F, Tamiaki H, Sakai K, Ikeuchi T and Sasaki S 2019 Sol. RRL 3 1900203
[20] Duan S N, Zhou Q, Li AJ, Wang X F, Sasaki S and Tamiaki H 2020 Sol. RRL 4 2000162
[21] Duan S N, Song J X, Zhou E J, Yang K, Lu S R, Li D F, Sasaki S, Tamiaki H and Wang X F 2022 J. Phys. Chem. C 126 4807
[22] Yan C Q, Barlow S, Wang Z H, Yan H, Jen A K Y, Marder S R and Zhan X W 2018 Nat. Rev. Mater. 3 18003
[23] Ye L, Hu H W, Ghasemi M, Wang T H, Collins B A, Kim J H, Jiang K, Carpenter J H, Li H, Li Z K, McAfee T, Zhao J B, Chen X K, Lai J L Y, Ma T X, Bredas J L, Yan H and Ade H 2018 Nat. Mater. 17 253
[24] Liu W, Xu X, Yuan J, Leclerc M, Zou Y P and Li Y F 2021 ACS Energy Lett. 6 598
[25] Privado M, de la Cruz P, Malhotra P, Sharma G D and Langa F 2021 Sol. Energy 221 393
[26] UrRehman S, Anwer M, BiBi S, Jamil S, Yasin M, Khan S R, Nadeem R, Ali S and Jia R 2022 Mater. Sci. Semicond. Process. 140 106381
[27] Shao Y Y, Lu T, Li M J and Lu W C 2022 New J. Chem. 46 3370
[28] Ahmed S and Kalita D J 2020 Phys. Chem. Chem. Phys. 22 23586
[29] Gao W, Liu T, Ming R J, Luo Z H, Wu K L, Zhang L, Xin J M, Xie D J, Zhang G Y, Ma W, Yan H and Yang C L 2018 Adv. Funct. Mater. 28 1803128
[30] Ma X L, Wang J, Gao J H, Hu Z H, Xu C Y, Zhang X L and Zhang F J 2020 Adv. Energy Mater. 10 2001404
[31] Guo X, Fan Q P, Wu J N, Li G W, Peng Z X, Su W Y, Lin J, Hou L T, Qin Y P, Ade H, Ye L, Zhang M J and Li Y F 2021 Angew. Chem. Int. Ed. 60 2322
[32] Yu H, Qi Z Y, Zhang J Q, Wang Z, Sun R, Chang Y, Sun H L, Zhou W T, Min J, Ade H and Yan H 2020 J. Mater. Chem. A 8 23756
[33] Geng S Z, Yang W T, Gao J, Li S X, Shi M M, Lau T K, Lu X H, Li C Z and Chen H Z 2019 Chin. J. Polym. Sci. 37 1005
[34] Liu X Z, Wei Y N, Zhang X, Qin L Q, Wei Z X and Huang H 2021 Sci. China Chem. 64 228
[35] Wang S H, Duan S N, Wang Y W, Sun C L, Wang X F and Sasaki S 2019 J. Energy Chem. 38 88
[36] Tang Y X, Feng H X, Liang Y Y, Tang H R, Du Z R, Xu J X, Huang F and Cao Y 2021 ACS Appl. Polym. Mater. 5 2298
[37] Efrem A, Lim C J, Lu Y and Ng S C 2014 Tetrahedron Lett. 55 4849
[38] Li S X, Zhan L L, Zhao W C, Zhang S H, Ali B, Fu Z S, Lau T K, Lu X H, Shi M M, Li C Z, Hou J H and Chen H Z 2018 J. Mater. Chem. A 6 12132
[39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[40] Kohn W and Sham L 1965 Phys. Rev. 137 A1697
[41] Becke A D 1988 Phys. Rev. A 38 3098
[42] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[43] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456
[44] Mu X J, Wang X X, Quan J and Sun M T 2020 J. Phys. Chem. C 124 4968
[45] Schweda B, Reinfelds M, Hofinger J, Baumel G, Rath T, Kaschnitz P, Fischer R C, Flock M, Amenitsch H, Scharber M C and Trimmel G 2022 Chem. Eur. J. 28 e202200276
[46] Sun B Y, Ren X, Li J and Chen J N 2023 J. Phys. Chem. C 127 15346
[47] Gross E K U and Kohn W 1985 Phys. Rev. Lett. 55 2850
[48] Yanai T, Tew D P and Handy N C 2004 Chem. Phys. Lett. 393 51
[49] Mattsson A E, Armiento R, Schultz P A and Mattsson T R 2006 Phys. Rev. B 73 195123
[50] Niu Y L, Li W Q, Peng Q, Geng H, Yi Y P, Wang LJ, Nan G J, Wang D and Shuai Z G 2018 Mol. Phys. 116 1078
[51] Nan G J, Yang X D, Wang L J, Shuai Z G and Zhao Y 2009 Phys. Rev. B 79 115203
[52] Shuai Z G, Geng H, Xu W, Liao Y and André J M 2014 Chem. Soc. Rev. 43 2662
[53] Shuai Z G, Wang D, Peng Q and Geng H 2014 Acc. Chem. Res. 47 3301
[54] Liu Z Y, Lu T and Chen Q X 2020 Carbon 165 468
[55] Li B, Cao B F, Zhou Q, Li Y, Bao Y J, Shi Y, Liu C L, Jin M X, Gao J B and Ding D J 2021 J. Mater. Chem. C 9 14388
[56] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Revision B01
[57] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[58] Lu T and Chen F W 2012 J. Mol. Graph. Model 38 314
[59] Pomogaeva A V, Scheer M and Timoshkin A Y 2018 Chem. Eur. J. 24 17046
[60] Zang Z F, Yu Y, Song P, Ma F C and Li Y Z 2023 J. Phys. Chem. C 127 110
[61] Zhang J and Lu T 2021 Phys. Chem. Chem. Phys. 23 20323
[62] Sirohi A, SanthiBhushan B and Srivastava A 2021 J. Mol. Model. 27 77
[63] Alexandre R A F, de Oliveira O V and dos Santos J D 2021 Chem. Phys. Lett. 766 138328
[64] Gai X W, Sheng H and Wang J A 2023 Phys. Chem. Chem. Phys. 25 20049
[65] Zhang K Y, Wei Z Q, Song P, Ma F C and Li Y Z 2022 Sol. Energy 248 160
[66] Nebbach D, Agda F, Kaya S, Siddique F, Lakhlifi T, Ajana M A and Bouachrine M 2022 J. Mol. Liq. 348 118289
[67] Aboulouard A, Mtougui S, Demir N, Moubarik A, El Idrissi M and Can M 2021 Synth. Met. 279 116846
[68] Zhou B, Hu Z, Jiang Y, He X, Sun Z and Sun H 2018 J. Phys.: Condens. Matter 30 215501
[69] Sun W, Bu Y and Wang Y 2014 Design and Applications of Nanomaterials for Sensors 16 31
[70] Lee J C, Chai J D and Lin S T 2015 RSC Adv. 5 101370
[71] Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065
[72] Marcus and Rudolph 1993 Rev. Mod. Phys. 65 599
[73] Calvo-Castro J, Mchugh C J and Mclean A J 2015 Dyes Pigm. 113 609
[74] Imahori H, Yamada H, Guldi D M, Shimomura A, Kundu S, Yamada K, Sakata Y and Fukuzumi S 2002 Angew. Chem. Int. Ed. 41 2344
[75] Koese M E, Mitchell W J, Kopidakis N, Chang C H, Shaheen S E, Kim K and Rumbles G 2007 J. Am. Chem. Soc. 129 14257
[76] Wang Q G, Zeng Z Y, Li Y Z and Chen X R 2020 Sol. Energy 208 10
[77] Li Y, Sasaki S, Tamiaki H, Liu C L, Song J X, Tian W J, Zheng E Q, Wei Y J, Chen G, Fu X Q and Wang X F 2015 J. Power Sources 297 519
[78] Han C Y, Wang J X, Chen L L, Chen J F, Zhou L, Wang P C, Shen W F, Zheng N, Wen S G, Li Y H and Bao X C 2021 Adv. Funct. Mater. 31 2107026
[79] Cui Y J, Zhu P P, Shi X L, Liao X F and Chen Y W 2021 J. Phys. Chem. C 125 10250
[80] Xu Y, Yao H F, Ma L J, Hong L, Li J Y, Liao Q, Zu Y F, Wang J W, Gao M Y, Ye L and Hou J H 2020 Angew. Chem. Int. Ed. 59 9004
[81] Shao Y Y, Lu T, Li M J and Lu W C 2022 New J. Chem. 46 3370
[82] Emelianova E V, van der Auweraer M and Bässler H 2008 J. Chem. Phys. 128 224709
[83] Zhen C G, Becker U and Kieffer J 2009 J. Phys. Chem. A 113 9707
[84] Kraner S, Prampolini G and Cuniberti G 2017 J. Phys. Chem. C 121 17088
[85] Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar M A, Baby R, Orfali R and Perveen S 2013 RSC Adv. 13 7237
[86] Zang Z F, Wang Q G, Song P, Ma F C and Li Y Z 2022 Sol. Energy 231 503
[87] Xiang C C, Zhao Q M, Liu W Q, Cao J M, Zou Y P and Zhou H 2022 J. Mater. Chem. A 10 25611
[88] Cave RJ and Newton MD 1996 Chem. Phys. Lett. 249 15
[89] Cossi M, Rega N, Scalmani G and Barone V 2003 J. Comput. Chem. 24 669
[90] Biswas S, Pramanik A, Pal S and Sarkar P 2017 J. Phys. Chem. C 121 2574
[91] Lemaur V, Steel M, Beljonne D, Bredas J L and Cornil J 2005 J. Am. Chem. Soc 127 6077
[92] Kose M E and Schanze K S 2020 J. Phys. Chem. A 124 9478
[93] Zhao H F, Yin H, Liu X C, Li H, Shi Y, Liu C L, Jin M X, Gao J B, Luo Y and Ding D J 2019 J. Phys. Chem. Lett. 10 3064
[94] Shen F G, Peng A D, Chen Y, Dong Y, Jiang Z W, Wang Y B, Fu H B and Yao J N 2008 J. Phys. Chem. A 112 2206
[95] Christians J A, Fung R C M and Kamat P V 2014 J. Am. Chem. Soc. 136 758
[96] Irfan A, Assiri M and Al-Sehemi AGJOE 2018 Org. Electron. 57 211
[97] Zhang W, Hu R, Zeng X K, Su X J, Chen Z F, Zou X S, Peng J, Zhang C Y and Yartsev A 2019 Polymers 11 408
[98] Zhu R, Li Q S and Li Z S 2019 J. Mater. Chem. A 7 16304
[99] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C L 2006 Adv. Mater. 18 789
[100] Street R A, Hawks S A, Khlyabich P P, Li G, Schwartz B J, Thompson B C and Yang Y 2014 J. Phys. Chem. C 118 21873
[101] Bijleveld J C, Verstrijden R A M, Wienk M M and Janssen R A J 2010 Appl. Phys. Lett. 97 073304
[102] Wu L N, Yin H, Li M Y, Sun G Y and Jin G D 2019 Comput. Theor. Chem. 1156 37
[103] Lu Q C, Wang Q G, Song P, Ma F C, Yang Y H and Li Y Z 2021 Sol. RRL 5 2100670
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound Vas
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[4] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[5] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[6] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[7] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[8] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[9] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[10] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[11] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[12] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[13] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[14] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[15] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
No Suggested Reading articles found!