Special Issue:
SPECIAL TOPIC — Quantum computing and quantum sensing
|
SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Correction of microwave pulse reflection by digital filters in superconducting quantum circuits |
Liang-Liang Guo(郭亮亮)1,2, Peng Duan(段鹏)1,2,†, Lei Du(杜磊)1,2, Hai-Feng Zhang(张海峰)1,2, Hao-Ran Tao(陶浩然)1,2, Yong Chen(陈勇)1,2, Xiao-Yan Yang(杨小燕)1,2, Chi Zhang(张驰)3, Zhi-Long Jia(贾志龙)3, Wei-Cheng Kong(孔伟成)3, Zhao-Yun Chen(陈昭昀)4, and Guo-Ping Guo(郭国平)1,2,3,‡ |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Origin Quantum Computing Company Limited, Hefei 230088, China; 4 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China |
|
|
Abstract Reducing the control error is vital for high-fidelity digital and analog quantum operations. In superconducting circuits, one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain. Here, we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line. We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters, which enables real-time reflection correction when integrated into the field-programmable gate array (FPGA). We achieve a reduction of single-qubit gate infidelity from 0.67% to 0.11% after eliminating microwave reflection. Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
|
Received: 28 May 2024
Revised: 25 June 2024
Accepted manuscript online: 02 July 2024
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419). |
Corresponding Authors:
Peng Duan, Guo-Ping Guo
E-mail: pengduan@ustc.edu.cn;gpguo@ustc.edu.cn
|
Cite this article:
Liang-Liang Guo(郭亮亮), Peng Duan(段鹏), Lei Du(杜磊), Hai-Feng Zhang(张海峰), Hao-Ran Tao(陶浩然), Yong Chen(陈勇), Xiao-Yan Yang(杨小燕), Chi Zhang(张驰), Zhi-Long Jia(贾志龙), Wei-Cheng Kong(孔伟成), Zhao-Yun Chen(陈昭昀), and Guo-Ping Guo(郭国平) Correction of microwave pulse reflection by digital filters in superconducting quantum circuits 2024 Chin. Phys. B 33 090303
|
[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505 [2] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501 [3] Zhu Q, Cao S, Chen F, et al. 2022 Science Bulletin 67 240 [4] Chen Z, Kelly J, Quintana C, et al. 2016 Phys. Rev. Lett. 116 020501 [5] McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330 [6] Chow J M, Córcoles A D, Gambetta J M, et al. 2011 Phys. Rev. Lett. 107 080502 [7] Patterson A, Rahamim J, Tsunoda T, et al. 2019 Phys. Rev. Appl. 12 064013 [8] Sundaresan N, Lauer I, Pritchett E, Magesan E, Jurcevic P and Gambetta J M 2020 PRX Quantum 1 020318 [9] Bardin J C, Slichter D H and Reilly D J 2021 IEEE Journal of Microwaves 1 403 [10] Rosenberg D, Weber S J, Conway D, et al. 2020 IEEE Microwave Magazine 21 72 [11] Yost D R W, Schwartz M E, Mallek J, et al. 2020 npj Quantum Information 6 59 [12] Vahidpour M, O’Brien W, Whyland J T, et al. 2017 arXiv: 1708.02226 [13] Alfaro-Barrantes J, Mastrangeli M, Thoen D, Visser S, Bueno J, Baselmans J and Sarro P M 2020 IEEE Electron Device Lett. 41 1114 [14] Grigoras K, Yurttagül N, Kaikkonen J P, et al. 2022 IEEE Transactions on Quantum Engineering 3 1 [15] Gustavsson S, Zwier O, Bylander J, Yan F, Yoshihara F, Nakamura Y, Orlando T P and Oliver W D 2013 Phys. Rev. Lett. 110 040502 [16] Dogan E, Rosenstock D, Le Guevel L, et al. 2023 Phys. Rev. Appl. 20 024011 [17] Rol M A, Ciorciaro L, Malinowski F K, et al. 2020 Appl. Phys. Lett. 116 054001 [18] Foxen B, Mutus J, Lucero E, et al. 2018 Superconductor Science and Technology 32 015012 [19] Zhang C, Wang T L, Guo L L, Yang X Y, Yang X X, Duan P, Jia Z L, Kong W C and Guo G P 2023 Appl. Phys. Lett. 122 024001 [20] Butko A, Michelogiannakis G, Williams S, et al. 2020 2020 International Conference on Rebooting Computing (ICRC), December 1-3, 2020, Atlanta, GA, USA, p. 66 [21] Hu L, Ma Y, Cai W, et al. 2019 Nat. Phys. 15 503 [22] Xiang L, Zong Z, Sun Z, Zhan Z, Fei Y, Dong Z, Run C, Jia Z, Duan P, Wu J, Yin Y and Guo G 2020 Phys. Rev. Appl. 14 014099 [23] Ingle V K and Proakis J G 2012 Digital Signal Processing Using MATLAB, 3nd edn. (Stamford, Conn.: Cengage Learning) pp.212-239 [24] van Dijk J P G, Patra B, Pellerano S, Charbon E, Sebastiano F and Babaie M 2020 IEEE Transactions on Circuits and Systems I: Regular Papers 67 5380 [25] Ryan C A, Johnson B R, Rist`e D, Donovan B and Ohki T A 2017 Rev. Sci. Instrum. 88 104703 [26] Koch J, Terri M Y, Gambetta J, et al. 2007 Phys. Rev. A 76 042319 [27] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502 [28] Herrmann J, Hellings C, Lazar S, et al. 2022 arXiv: 2210.02513 [29] Li Z, Liu P, Zhao P, et al. 2023 npj Quantum Information 9 111 [30] Das S and Suganthan P N 2010 IEEE Transactions on Evolutionary Computation 15 4 [31] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501 [32] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504 [33] Magesan E, Gambetta J M and Emerson J 2012 Phys. Rev. A 85 042311 [34] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500 [35] Kelly J, Barends R, Campbell B, et al. 2014 Phys. Rev. Lett. 112 240504 [36] Kelly J, O’Malley P, Neeley M, Neven H and Martinis J M 2018 arXiv: 1803.03226 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|