Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090303    DOI: 10.1088/1674-1056/ad5d98
Special Issue: SPECIAL TOPIC — Quantum computing and quantum sensing
SPECIAL TOPIC — Quantum computing and quantum sensing Prev   Next  

Correction of microwave pulse reflection by digital filters in superconducting quantum circuits

Liang-Liang Guo(郭亮亮)1,2, Peng Duan(段鹏)1,2,†, Lei Du(杜磊)1,2, Hai-Feng Zhang(张海峰)1,2, Hao-Ran Tao(陶浩然)1,2, Yong Chen(陈勇)1,2, Xiao-Yan Yang(杨小燕)1,2, Chi Zhang(张驰)3, Zhi-Long Jia(贾志龙)3, Wei-Cheng Kong(孔伟成)3, Zhao-Yun Chen(陈昭昀)4, and Guo-Ping Guo(郭国平)1,2,3,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Origin Quantum Computing Company Limited, Hefei 230088, China;
4 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
Abstract  Reducing the control error is vital for high-fidelity digital and analog quantum operations. In superconducting circuits, one disagreeable error arises from the reflection of microwave signals due to impedance mismatch in the control chain. Here, we demonstrate a reflection cancelation method when considering that there are two reflection nodes on the control line. We propose to generate the pre-distortion pulse by passing the envelopes of the microwave signal through digital filters, which enables real-time reflection correction when integrated into the field-programmable gate array (FPGA). We achieve a reduction of single-qubit gate infidelity from 0.67% to 0.11% after eliminating microwave reflection. Real-time correction of microwave reflection paves the way for precise control and manipulation of the qubit state and would ultimately enhance the performance of algorithms and simulations executed on quantum processors.
Keywords:  reflection cancelation      digital filter      single-qubit gate      superconducting circuit  
Received:  28 May 2024      Revised:  25 June 2024      Accepted manuscript online:  02 July 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12034018 and 11625419).
Corresponding Authors:  Peng Duan, Guo-Ping Guo     E-mail:  pengduan@ustc.edu.cn;gpguo@ustc.edu.cn

Cite this article: 

Liang-Liang Guo(郭亮亮), Peng Duan(段鹏), Lei Du(杜磊), Hai-Feng Zhang(张海峰), Hao-Ran Tao(陶浩然), Yong Chen(陈勇), Xiao-Yan Yang(杨小燕), Chi Zhang(张驰), Zhi-Long Jia(贾志龙), Wei-Cheng Kong(孔伟成), Zhao-Yun Chen(陈昭昀), and Guo-Ping Guo(郭国平) Correction of microwave pulse reflection by digital filters in superconducting quantum circuits 2024 Chin. Phys. B 33 090303

[1] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[2] Wu Y, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501
[3] Zhu Q, Cao S, Chen F, et al. 2022 Science Bulletin 67 240
[4] Chen Z, Kelly J, Quintana C, et al. 2016 Phys. Rev. Lett. 116 020501
[5] McKay D C, Wood C J, Sheldon S, Chow J M and Gambetta J M 2017 Phys. Rev. A 96 022330
[6] Chow J M, Córcoles A D, Gambetta J M, et al. 2011 Phys. Rev. Lett. 107 080502
[7] Patterson A, Rahamim J, Tsunoda T, et al. 2019 Phys. Rev. Appl. 12 064013
[8] Sundaresan N, Lauer I, Pritchett E, Magesan E, Jurcevic P and Gambetta J M 2020 PRX Quantum 1 020318
[9] Bardin J C, Slichter D H and Reilly D J 2021 IEEE Journal of Microwaves 1 403
[10] Rosenberg D, Weber S J, Conway D, et al. 2020 IEEE Microwave Magazine 21 72
[11] Yost D R W, Schwartz M E, Mallek J, et al. 2020 npj Quantum Information 6 59
[12] Vahidpour M, O’Brien W, Whyland J T, et al. 2017 arXiv: 1708.02226
[13] Alfaro-Barrantes J, Mastrangeli M, Thoen D, Visser S, Bueno J, Baselmans J and Sarro P M 2020 IEEE Electron Device Lett. 41 1114
[14] Grigoras K, Yurttagül N, Kaikkonen J P, et al. 2022 IEEE Transactions on Quantum Engineering 3 1
[15] Gustavsson S, Zwier O, Bylander J, Yan F, Yoshihara F, Nakamura Y, Orlando T P and Oliver W D 2013 Phys. Rev. Lett. 110 040502
[16] Dogan E, Rosenstock D, Le Guevel L, et al. 2023 Phys. Rev. Appl. 20 024011
[17] Rol M A, Ciorciaro L, Malinowski F K, et al. 2020 Appl. Phys. Lett. 116 054001
[18] Foxen B, Mutus J, Lucero E, et al. 2018 Superconductor Science and Technology 32 015012
[19] Zhang C, Wang T L, Guo L L, Yang X Y, Yang X X, Duan P, Jia Z L, Kong W C and Guo G P 2023 Appl. Phys. Lett. 122 024001
[20] Butko A, Michelogiannakis G, Williams S, et al. 2020 2020 International Conference on Rebooting Computing (ICRC), December 1-3, 2020, Atlanta, GA, USA, p. 66
[21] Hu L, Ma Y, Cai W, et al. 2019 Nat. Phys. 15 503
[22] Xiang L, Zong Z, Sun Z, Zhan Z, Fei Y, Dong Z, Run C, Jia Z, Duan P, Wu J, Yin Y and Guo G 2020 Phys. Rev. Appl. 14 014099
[23] Ingle V K and Proakis J G 2012 Digital Signal Processing Using MATLAB, 3nd edn. (Stamford, Conn.: Cengage Learning) pp.212-239
[24] van Dijk J P G, Patra B, Pellerano S, Charbon E, Sebastiano F and Babaie M 2020 IEEE Transactions on Circuits and Systems I: Regular Papers 67 5380
[25] Ryan C A, Johnson B R, Rist`e D, Donovan B and Ohki T A 2017 Rev. Sci. Instrum. 88 104703
[26] Koch J, Terri M Y, Gambetta J, et al. 2007 Phys. Rev. A 76 042319
[27] Barends R, Kelly J, Megrant A, et al. 2013 Phys. Rev. Lett. 111 080502
[28] Herrmann J, Hellings C, Lazar S, et al. 2022 arXiv: 2210.02513
[29] Li Z, Liu P, Zhao P, et al. 2023 npj Quantum Information 9 111
[30] Das S and Suganthan P N 2010 IEEE Transactions on Evolutionary Computation 15 4
[31] Motzoi F, Gambetta J M, Rebentrost P and Wilhelm F K 2009 Phys. Rev. Lett. 103 110501
[32] Magesan E, Gambetta J M and Emerson J 2011 Phys. Rev. Lett. 106 180504
[33] Magesan E, Gambetta J M and Emerson J 2012 Phys. Rev. A 85 042311
[34] Barends R, Kelly J, Megrant A, et al. 2014 Nature 508 500
[35] Kelly J, Barends R, Campbell B, et al. 2014 Phys. Rev. Lett. 112 240504
[36] Kelly J, O’Malley P, Neeley M, Neven H and Martinis J M 2018 arXiv: 1803.03226
[1] Optimize Purcell filter design for reducing influence of fabrication variation
Xiao Cai(蔡晓), Yi-Biao Zhou(周翼彪), Wen-Long Yu(于文龙), Kang-Lin Xiong(熊康林), and Jia-Gui Feng(冯加贵). Chin. Phys. B, 2024, 33(6): 068501.
[2] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[3] Fast and perfect state transfer in superconducting circuit with tunable coupler
Chi Zhang(张驰), Tian-Le Wang(王天乐), Ze-An Zhao(赵泽安), Xiao-Yan Yang(杨小燕), Liang-Liang Guo(郭亮亮), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2023, 32(11): 110305.
[4] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[5] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[6] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[7] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[8] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[9] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[10] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[11] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[12] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[13] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
No Suggested Reading articles found!