Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048501    DOI: 10.1088/1674-1056/abc2bb
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator

Shuai-Peng Wang(王帅鹏)1, Zhen Chen(陈臻)1,3, and Tiefu Li(李铁夫)2,1,3,4,†
1 Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China; 2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China
Abstract  Frequency combs are useful in a wide range of applications, such as optical metrology and high-precision spectroscopy. We experimentally study a controllable frequency comb generated in a tunable superconducting coplanar-waveguide resonator in the microwave regime. A two-tone drive is applied on one of the resonance modes of the resonator and comb generation is observed around the resonance frequency of the resonator. Both central frequency and teeth density of the comb are precisely controllable, and the teeth spacing can be adjusted from Hz to MHz. Moreover, we show that a few hundreds of sidebands can be generated using a sufficiently strong drive power and the weakest drive power needed to generate the comb can be reduced to approach the quantum limit. These experimental results can be qualitatively explained via theoretical analysis.
Keywords:  superconducting circuit      SQUID      microwave frequency comb  
Received:  19 August 2020      Revised:  18 September 2020      Accepted manuscript online:  20 October 2020
PACS:  85.25.Am (Superconducting device characterization, design, and modeling)  
  85.25.Cp (Josephson devices)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018003), the National Key Research and Development Program of China (Grant No. 2016YFA0301200), the National Natural Science Foundation of China (Grant Nos. 62074091, 11934010, U1801661, and U1930402), and the BAQIS Research Program (Grant No. Y18G27).
Corresponding Authors:  Corresponding author. E-mail: litf@tsinghua.edu.cn   

Cite this article: 

Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫) Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator 2021 Chin. Phys. B 30 048501

1 Udem T, Holzwarth R and Hansch T W 2002 Nature 416 233
2 Cundiff S T and Ye J 2003 Rev. Mod. Phys. 75 325
3 Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
4 Thorpe M J, Moll K D, Jones J J, Safdi B and Ye J 2006 Science 311 1595
5 Diddams S A, Hollberg L and Mbele V 2007 Nature 445 627
6 Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
7 Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W and Diddams S A 2011 Nat. Photon. 5 425
8 Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214
9 Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555
10 Griffith A G, Lau R K W, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H D, Yu M, Phare C T, Poitras C B, Gaeta A L and Lipson M 2015 Nat. Commun. 6 6299
11 Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seide D and Maleki L 2015 Nat. Commun. 6 7957
12 Erickson R P, Vissers M R, Sandberg M, Jefferts S R and Pappas D P 2014 Phys. Rev. Lett. 113 187002
13 Solinas P, Gasparinetti S, Golubev D and Giazotto F 2015 Sci. Rep. 5 12260
14 Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V 2008 Appl. Phys. Lett. 92 203501
15 Wilson C M, Duty T, Sandberg M, Persson F, Shumeiko V and Delsing P 2010 Phys. Rev. Lett. 105 233907
16 Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl. Phys. Lett. 93 042510
17 Huang K, Guo Q, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X and Zheng D 2017 Chin. Phys. B 26 094203
18 Su F F, Wang Z T, Xu H K, Zhao S, Yan H, Yang Z H, Tian Y, Zhao S P 2019 Chin. Phys. B 28 110303
19 Hutter C, Platz D, Tholén E A, Hansson T H and Haviland D B 2010 Phys. Rev. Lett. 104 050801
20 Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325
21 Wang S P, Zhang G Q, Wang Y, Chen Z, Li T, Tsai J S, Zhu S Y and You J Q 2020 Phys. Rev. Appl. 13 054063
22 Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309
23 Zhang K, Li M M, Liu Q, Yu H F and Yu Y 2017 Chin. Phys. B 26 078501
24 Tholén E A, Ergül A, Schaeffer D and Haviland D B 2014 EPJ Quantum Technol. 1 5
25 Krantz P, Reshitnyk Y, Wustmann W, Bylander J, Gustavsson S, Oliver W D, Duty T, Shumeiko V and Delsing P 2013 New J. Phys. 15 105002
26 Eichler C and Wallraf A 2014 EPJ Quantum Technol. 1 2
27 Tancredi G, Ithier G and Meeson P J 2013 Appl. Phys. Lett. 103 063504
[1] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[4] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[5] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[6] Micro-scale photon source in a hybrid cQED system
Ming-Bo Chen(陈明博), Bao-Chuan Wang(王保传), Si-Si Gu(顾思思), Ting Lin(林霆), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2021, 30(4): 048507.
[7] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[8] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[13] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[14] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[15] Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback
Zhao Mao-Rong (赵茂戎), Wu Zheng-Mao (吴正茂), Deng Tao (邓涛), Zhou Zhen-Li (周桢力), Xia Guang-Qiong (夏光琼). Chin. Phys. B, 2015, 24(5): 054207.
No Suggested Reading articles found!