INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator |
Shuai-Peng Wang(王帅鹏)1, Zhen Chen(陈臻)1,3, and Tiefu Li(李铁夫)2,1,3,4,† |
1 Quantum Physics and Quantum Information Division, Beijing Computational Science Research Center, Beijing 100193, China; 2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 4 Frontier Science Center for Quantum Information, Beijing 100084, China |
|
|
Abstract Frequency combs are useful in a wide range of applications, such as optical metrology and high-precision spectroscopy. We experimentally study a controllable frequency comb generated in a tunable superconducting coplanar-waveguide resonator in the microwave regime. A two-tone drive is applied on one of the resonance modes of the resonator and comb generation is observed around the resonance frequency of the resonator. Both central frequency and teeth density of the comb are precisely controllable, and the teeth spacing can be adjusted from Hz to MHz. Moreover, we show that a few hundreds of sidebands can be generated using a sufficiently strong drive power and the weakest drive power needed to generate the comb can be reduced to approach the quantum limit. These experimental results can be qualitatively explained via theoretical analysis.
|
Received: 19 August 2020
Revised: 18 September 2020
Accepted manuscript online: 20 October 2020
|
PACS:
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
85.25.Cp
|
(Josephson devices)
|
|
85.25.Dq
|
(Superconducting quantum interference devices (SQUIDs))
|
|
Fund: Project supported by the Science Challenge Project (Grant No. TZ2018003), the National Key Research and Development Program of China (Grant No. 2016YFA0301200), the National Natural Science Foundation of China (Grant Nos. 62074091, 11934010, U1801661, and U1930402), and the BAQIS Research Program (Grant No. Y18G27). |
Corresponding Authors:
†Corresponding author. E-mail: litf@tsinghua.edu.cn
|
Cite this article:
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫) Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator 2021 Chin. Phys. B 30 048501
|
1 Udem T, Holzwarth R and Hansch T W 2002 Nature 416 233 2 Cundiff S T and Ye J 2003 Rev. Mod. Phys. 75 325 3 Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802 4 Thorpe M J, Moll K D, Jones J J, Safdi B and Ye J 2006 Science 311 1595 5 Diddams S A, Hollberg L and Mbele V 2007 Nature 445 627 6 Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351 7 Fortier T M, Kirchner M S, Quinlan F, Taylor J, Bergquist J C, Rosenband T, Lemke N, Ludlow A, Jiang Y, Oates C W and Diddams S A 2011 Nat. Photon. 5 425 8 Del'Haye P, Schliesser A, Arcizet O, Wilken T, Holzwarth R and Kippenberg T J 2007 Nature 450 1214 9 Kippenberg T J, Holzwarth R, Diddams S A 2011 Science 332 555 10 Griffith A G, Lau R K W, Cardenas J, Okawachi Y, Mohanty A, Fain R, Lee Y H D, Yu M, Phare C T, Poitras C B, Gaeta A L and Lipson M 2015 Nat. Commun. 6 6299 11 Liang W, Eliyahu D, Ilchenko V S, Savchenkov A A, Matsko A B, Seide D and Maleki L 2015 Nat. Commun. 6 7957 12 Erickson R P, Vissers M R, Sandberg M, Jefferts S R and Pappas D P 2014 Phys. Rev. Lett. 113 187002 13 Solinas P, Gasparinetti S, Golubev D and Giazotto F 2015 Sci. Rep. 5 12260 14 Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V 2008 Appl. Phys. Lett. 92 203501 15 Wilson C M, Duty T, Sandberg M, Persson F, Shumeiko V and Delsing P 2010 Phys. Rev. Lett. 105 233907 16 Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y and Tsai J S 2008 Appl. Phys. Lett. 93 042510 17 Huang K, Guo Q, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X and Zheng D 2017 Chin. Phys. B 26 094203 18 Su F F, Wang Z T, Xu H K, Zhao S, Yan H, Yang Z H, Tian Y, Zhao S P 2019 Chin. Phys. B 28 110303 19 Hutter C, Platz D, Tholén E A, Hansson T H and Haviland D B 2010 Phys. Rev. Lett. 104 050801 20 Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325 21 Wang S P, Zhang G Q, Wang Y, Chen Z, Li T, Tsai J S, Zhu S Y and You J Q 2020 Phys. Rev. Appl. 13 054063 22 Wu Y L, Deng H, Yu H F, Xue G M, Tian Y, Li J, Chen Y F, Zhao S P and Zheng D N 2013 Chin. Phys. B 22 060309 23 Zhang K, Li M M, Liu Q, Yu H F and Yu Y 2017 Chin. Phys. B 26 078501 24 Tholén E A, Ergül A, Schaeffer D and Haviland D B 2014 EPJ Quantum Technol. 1 5 25 Krantz P, Reshitnyk Y, Wustmann W, Bylander J, Gustavsson S, Oliver W D, Duty T, Shumeiko V and Delsing P 2013 New J. Phys. 15 105002 26 Eichler C and Wallraf A 2014 EPJ Quantum Technol. 1 2 27 Tancredi G, Ithier G and Meeson P J 2013 Appl. Phys. Lett. 103 063504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|