Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020304    DOI: 10.1088/1674-1056/ac380e
GENERAL Prev   Next  

Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics

Zi-Yong Ge(葛自勇)1,2, Rui-Zhen Huang(黄瑞珍)3,†, Zi-Yang Meng(孟子杨)1,4,5, and Heng Fan(范桁)1,2,4,6,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong SAR, China;
6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $\mathbb{Z}_2$ LGT on superconducting quantum circuits, where the effective theory is a mixture of a LGT and a gauge-broken term. By using matrix product state based methods, both the ground state properties and quench dynamics are systematically investigated. With an increase of the transverse (electric) field, the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase. In the ordered phase, an approximate Gauss law of the $\mathbb{Z}_2$ LGT emerges in the ground state. Moreover, to shed light on the experiments, we also study the quench dynamics, where there is a dynamical signature of the spontaneous translational symmetry breaking. The spreading of the single particle of matter degree is diffusive under the weak transverse field, while it is ballistic with small velocity for the strong field. Furthermore, due to the emergent Gauss law under the strong transverse field, the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping. Our results pave the way for simulating the LGT on superconducting circuits, including the quantum phase transition and quench dynamics.
Keywords:  quantum simulation      superconducting circuits      lattice gauge theories  
Received:  16 August 2021      Revised:  28 September 2021      Accepted manuscript online:  10 November 2021
PACS:  03.67.-a (Quantum information)  
  05.30.Rt (Quantum phase transitions)  
  11.15.Ha (Lattice gauge theory)  
Fund: The DMRG and TEBD calculations are carried out with TeNPy Library.[50] R.Z.H is supported by China Postdoctoral Science Foundation (Grant No. 2020T130643), the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant No. 12047554). Z. Y. M acknowledges support from the National Key Research and Development Program of China (Grant No. 2016YFA0300502) and the Research Grants Council of Hong Kong SAR China (Grant No. 17303019). H. F acknowledges support from the National Key R&D Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11774406 and 11934018), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Academy of Quantum Information Science (Grant No. Y18G07).
Corresponding Authors:  Rui-Zhen Huang, Heng Fan     E-mail:  huangruizhen13@mails.ucas.ac.cn;hfan@iphy.ac.cn

Cite this article: 

Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁) Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics 2022 Chin. Phys. B 31 020304

[1] Buluta I and Nori F 2009 Science 326 108
[2] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[3] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[4] Eisert J, Friesdorf M and Gogolin C 2015 Nat. Phys. 11 124
[5] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
[6] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718 1
[7] Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S and Wallraff A 2015 Phys. Rev. X 5 021027
[8] Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654
[9] Flurin E, Ramasesh V. V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023
[10] Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W and Wang H 2016 Phys. Rev. Lett. 117 110501
[11] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175
[12] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N and Fan H 2018 Phys. Rev. Lett. 120 050507
[13] Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 030502
[14] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753
[15] Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J and Schuster D I 2019 Nature 566 51
[16] Ye Y, Ge Z Y, Wu Y, et al. 2019 Phys. Rev. Lett. 123 050502
[17] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N and Fan H 2019 Phys. Rev. Applied 11 044080
[18] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H, 2020 Sci. Adv. 6 eaba4935
[19] Arute F, Arya K, Babbush R et al. 2019 Nature 574 505
[20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460
[21] Wu Y, Bao W S, Cao S, et al. 2021 arXiv:2106.14734
[22] Wilson K G 1974 Phys. Rev. D 10 2445
[23] Kogut J B 1979 Rev. Mod. Phys. 51 659
[24] Wen X 2004 Quantum Field Theory of Many-Body Systems (Oxford:Oxford University Press)
[25] Fradkin E 2013 Field Theories of Condensed Matter Physics (Cambridge:Cambridge University Press)
[26] Kitaev A 2003 Ann. Phys. 303 2
[27] Kitaev A 2003 Ann. Phys. 321 2
[28] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003
[29] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[30] Hebenstreit F, Berges J and Gelfand D 2013 Phys. Rev. Lett. 111 201601
[31] Kormos M, Collura M, Takács G and Calabrese P 2017 Nat. Phys. 13 246
[32] Zohar E, Cirac J I and Reznik B 2012 Phys. Rev. Lett. 109 125302
[33] Banerjee D, Dalmonte M, Mäuller M, Rico E, Stebler P, Wiese U J and Zoller P 2012 Phys. Rev. Lett. 109 175302
[34] Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N and Grusdt F 2019 Sci. Adv. 5 7444
[35] Hauke P, Marcos D, Dalmonte M and Zoller P 2013 Phys. Rev. Lett. 3 041018
[36] Marcos D, Rabl P, Rico E and Zoller P 2013 Phys. Rev. Lett. 111 110504
[37] Brennen G K, Pupillo G, Rico E, Stace T M and Vodola D 2016 Phys. Rev. Lett. 117 240504
[38] Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501
[39] Chamon C, Green D and Yang Z C 2020 Phys. Rev. Lett. 125 067203
[40] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168
[41] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161
[42] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392
[43] Schrieffer J R and Wolff P A 2020 Phys. Rev. 149 491
[44] Bravyi S, DiVincenzo D P and Loss D 2011 Ann. Phys. 326 2793
[45] Borla U, Verresen R, Grusdt F and Moroz S 2020 Phys. Rev. Lett. 124 120503
[46] Schollwöck U 2005 Rev. Mod. Phys. 77 259
[47] Schollwöck U 2011 Ann. Phys. 326 96
[48] Vidal G 2004 Phys. Rev. Lett. 93 040502
[49] Kim H and Huse D A 2013 Phys. Rev. Lett. 11 127205
[50] Hauschild J and Pollmann F 2018 SciPost Phys. Lect. Notes 5
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[3] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[4] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[5] Quantum simulation of τ-anti-pseudo-Hermitian two-level systems
Chao Zheng(郑超). Chin. Phys. B, 2022, 31(10): 100301.
[6] Quantum simulation and quantum computation of noisy-intermediate scale
Kai Xu(许凯), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(10): 100304.
[7] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[8] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Review of quantum simulation based on Rydberg many-body system
Zheng-Yuan Zhang(张正源), Dong-Sheng Ding(丁冬生), and Bao-Sen Shi(史保森). Chin. Phys. B, 2021, 30(2): 020307.
[11] Low-temperature environments for quantum computation and quantum simulation
Hailong Fu(付海龙), Pengjie Wang(王鹏捷), Zhenhai Hu(胡禛海), Yifan Li(李亦璠), and Xi Lin(林熙). Chin. Phys. B, 2021, 30(2): 020702.
[12] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[13] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[14] Linear optical approach to supersymmetric dynamics
Yong-Tao Zhan(詹颙涛), Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Wei-Wei Pan(潘维韦), Munsif Jan, Fu-Ming Chang(常弗鸣), Kai Sun(孙凯), Jin-Shi Xu(许金时), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(1): 014209.
[15] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
No Suggested Reading articles found!