|
|
Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics |
Zi-Yong Ge(葛自勇)1,2, Rui-Zhen Huang(黄瑞珍)3,†, Zi-Yang Meng(孟子杨)1,4,5, and Heng Fan(范桁)1,2,4,6,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong SAR, China; 6 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Recently, quantum simulation of low-dimensional lattice gauge theories (LGTs) has attracted many interests, which may improve our understanding of strongly correlated quantum many-body systems. Here, we propose an implementation to approximate $\mathbb{Z}_2$ LGT on superconducting quantum circuits, where the effective theory is a mixture of a LGT and a gauge-broken term. By using matrix product state based methods, both the ground state properties and quench dynamics are systematically investigated. With an increase of the transverse (electric) field, the system displays a quantum phase transition from a disordered phase to a translational symmetry breaking phase. In the ordered phase, an approximate Gauss law of the $\mathbb{Z}_2$ LGT emerges in the ground state. Moreover, to shed light on the experiments, we also study the quench dynamics, where there is a dynamical signature of the spontaneous translational symmetry breaking. The spreading of the single particle of matter degree is diffusive under the weak transverse field, while it is ballistic with small velocity for the strong field. Furthermore, due to the emergent Gauss law under the strong transverse field, the matter degree can also exhibit confinement dynamics which leads to a strong suppression of the nearest-neighbor hopping. Our results pave the way for simulating the LGT on superconducting circuits, including the quantum phase transition and quench dynamics.
|
Received: 16 August 2021
Revised: 28 September 2021
Accepted manuscript online: 10 November 2021
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
05.30.Rt
|
(Quantum phase transitions)
|
|
11.15.Ha
|
(Lattice gauge theory)
|
|
Fund: The DMRG and TEBD calculations are carried out with TeNPy Library.[50] R.Z.H is supported by China Postdoctoral Science Foundation (Grant No. 2020T130643), the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (Grant No. 12047554). Z. Y. M acknowledges support from the National Key Research and Development Program of China (Grant No. 2016YFA0300502) and the Research Grants Council of Hong Kong SAR China (Grant No. 17303019). H. F acknowledges support from the National Key R&D Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 11774406 and 11934018), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Academy of Quantum Information Science (Grant No. Y18G07). |
Corresponding Authors:
Rui-Zhen Huang, Heng Fan
E-mail: huangruizhen13@mails.ucas.ac.cn;hfan@iphy.ac.cn
|
Cite this article:
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁) Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics 2022 Chin. Phys. B 31 020304
|
[1] Buluta I and Nori F 2009 Science 326 108 [2] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [3] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863 [4] Eisert J, Friesdorf M and Gogolin C 2015 Nat. Phys. 11 124 [5] Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357 [6] Gu X, Kockum A F, Miranowicz A, Liu Y and Nori F 2017 Phys. Rep. 718 1 [7] Salathé Y, Mondal M, Oppliger M, Heinsoo J, Kurpiers P, Potočnik A, Mezzacapo A, Heras U L, Lamata L, Solano E, Filipp S and Wallraff A 2015 Phys. Rev. X 5 021027 [8] Barends R, Lamata L, Kelly J, et al. 2015 Nat. Commun. 6 7654 [9] Flurin E, Ramasesh V. V, Hacohen-Gourgy S, Martin L S, Yao N Y and Siddiqi I 2017 Phys. Rev. X 7 031023 [10] Zhong Y P, Xu D, Wang P, Song C, Guo Q J, Liu W X, Xu K, Xia B X, Lu C Y, Han S, Pan J W and Wang H 2016 Phys. Rev. Lett. 117 110501 [11] Roushan P, Neill C, Tangpanitanon J, et al. 2017 Science 358 1175 [12] Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N and Fan H 2018 Phys. Rev. Lett. 120 050507 [13] Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng S B, Wang H, Zhu X, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 030502 [14] Yan Z, Zhang Y R, Gong M, et al. 2019 Science 364 753 [15] Ma R, Saxberg B, Owens C, Leung N, Lu Y, Simon J and Schuster D I 2019 Nature 566 51 [16] Ye Y, Ge Z Y, Wu Y, et al. 2019 Phys. Rev. Lett. 123 050502 [17] Guo X Y, Yang C, Zeng Y, Peng Y, Li H K, Deng H, Jin Y R, Chen S, Zheng D N and Fan H 2019 Phys. Rev. Applied 11 044080 [18] Xu K, Sun Z H, Liu W, Zhang Y R, Li H, Dong H, Ren W, Zhang P, Nori F, Zheng D, Fan H and Wang H, 2020 Sci. Adv. 6 eaba4935 [19] Arute F, Arya K, Babbush R et al. 2019 Nature 574 505 [20] Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460 [21] Wu Y, Bao W S, Cao S, et al. 2021 arXiv:2106.14734 [22] Wilson K G 1974 Phys. Rev. D 10 2445 [23] Kogut J B 1979 Rev. Mod. Phys. 51 659 [24] Wen X 2004 Quantum Field Theory of Many-Body Systems (Oxford:Oxford University Press) [25] Fradkin E 2013 Field Theories of Condensed Matter Physics (Cambridge:Cambridge University Press) [26] Kitaev A 2003 Ann. Phys. 303 2 [27] Kitaev A 2003 Ann. Phys. 321 2 [28] Zhou Y, Kanoda K and Ng T K 2017 Rev. Mod. Phys. 89 025003 [29] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490 [30] Hebenstreit F, Berges J and Gelfand D 2013 Phys. Rev. Lett. 111 201601 [31] Kormos M, Collura M, Takács G and Calabrese P 2017 Nat. Phys. 13 246 [32] Zohar E, Cirac J I and Reznik B 2012 Phys. Rev. Lett. 109 125302 [33] Banerjee D, Dalmonte M, Mäuller M, Rico E, Stebler P, Wiese U J and Zoller P 2012 Phys. Rev. Lett. 109 175302 [34] Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N and Grusdt F 2019 Sci. Adv. 5 7444 [35] Hauke P, Marcos D, Dalmonte M and Zoller P 2013 Phys. Rev. Lett. 3 041018 [36] Marcos D, Rabl P, Rico E and Zoller P 2013 Phys. Rev. Lett. 111 110504 [37] Brennen G K, Pupillo G, Rico E, Stace T M and Vodola D 2016 Phys. Rev. Lett. 117 240504 [38] Zohar E, Farace A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501 [39] Chamon C, Green D and Yang Z C 2020 Phys. Rev. Lett. 125 067203 [40] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168 [41] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161 [42] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392 [43] Schrieffer J R and Wolff P A 2020 Phys. Rev. 149 491 [44] Bravyi S, DiVincenzo D P and Loss D 2011 Ann. Phys. 326 2793 [45] Borla U, Verresen R, Grusdt F and Moroz S 2020 Phys. Rev. Lett. 124 120503 [46] Schollwöck U 2005 Rev. Mod. Phys. 77 259 [47] Schollwöck U 2011 Ann. Phys. 326 96 [48] Vidal G 2004 Phys. Rev. Lett. 93 040502 [49] Kim H and Huse D A 2013 Phys. Rev. Lett. 11 127205 [50] Hauschild J and Pollmann F 2018 SciPost Phys. Lect. Notes 5 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|