|
|
High quality factor superconducting coplanar waveguide fabricated with TiN |
Qiang Liu(刘强)1, Guang-Ming Xue(薛光明)2, Xin-Sheng Tan(谭新生)1, Hai-Feng Yu(于海峰)1,3, Yang Yu(于扬)1,3 |
1 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2 Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
3 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract We fabricated TiN coplanar waveguides using standard lithography techniques followed by ICP etch. In order to achieve high quality factor, we investigated the film growth by choosing different deposition conditions for various substrates. Quality factors of waveguide resonators were measured at 20 mK in both high and low microwave power limits. An inner quality factor of several million was achieved at high power limit for a predominantly (200)-oriented TiN film which was grown on HF cleaned silicon wafer. A quality factor of larger than one million was achieved at high power limit for TiN film grown on sapphire.
|
Received: 16 February 2017
Accepted manuscript online:
|
PACS:
|
84.40.Az
|
(Waveguides, transmission lines, striplines)
|
|
85.25.Am
|
(Superconducting device characterization, design, and modeling)
|
|
Fund: Project supported by the the NKRDP of China (Grant No. 2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11504165, 11474152, and 61521001). |
Corresponding Authors:
Hai-Feng Yu, Yang Yu
E-mail: hfyu@nju.edu.cn;yuyang@nju.edu.cn
|
Cite this article:
Qiang Liu(刘强), Guang-Ming Xue(薛光明), Xin-Sheng Tan(谭新生), Hai-Feng Yu(于海峰), Yang Yu(于扬) High quality factor superconducting coplanar waveguide fabricated with TiN 2017 Chin. Phys. B 26 058402
|
[1] |
van Loo A F, Fedorov A, Lalumiere K, Sanders B C, Blais A and Wallraff A 2013 Science 342 1494
|
[2] |
Devoret M H and Schoelkopf R J 2013 Science 339 1169
|
[3] |
Córcoles A D, Magesan E, Srinivasan S J, Cross A W, Steffen M, Gambetta J M and Chow J M 2015 Nat. Commun. 6 6979
|
[4] |
Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517
|
[5] |
Barends R, Shabani A, Lamata L, et al. 2016 Nature 534 222
|
[6] |
Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
|
[7] |
Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
|
[8] |
Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
|
[9] |
Leghtas Z, Touzard S, Pop I M, Kou A, Vlastakis B, Petrenko A, Sliwa K M, Narla A, Shankar S, Hatridge M J, Reagor M, Frunzio L, Schoelkopf R J, Mirrahimi M and Devoret M H 2015 Science 347 853
|
[10] |
Chow J M, Gambetta J M, Magesan E, Abraham D W, Cross A W, Johnson B R, Masluk N A, Ryan C A, Smolin J A, Srinivasan S J and Steffen M 2014 Nat. Commun. 5 4015
|
[11] |
Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A 76 042319
|
[12] |
Vissers M R, Gao J, Wisbey D S, Hite D A, Tsuei C C, Córcoles A D, Steffen M and Pappas D P 2010 Appl. Phys. Lett. 97 232509
|
[13] |
Wang C, Axline C, Gao Y Y, Brecht T, Chu Y, Frunzio L, Devoret M H and Schoelkopf R J 2015 Appl. Phys. Lett. 107 162601
|
[14] |
Wisbey D S, Gao J, Vissers M R, da Silva F C S, Kline J S, Vale L and Pappas D P 2010 J. Appl. Phys. 108 093918
|
[15] |
Quintana C M, Megrant A, Chen Z, et al. 2014 Appl. Phys. Lett. 105 062601
|
[16] |
Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N and Martinis J M 2009 Appl. Phys. Lett. 95 233508
|
[17] |
Sandberg M, Vissers M R, Kline J S, Weides M, Gao J, Wisbey D S and Pappas D P 2012 Appl. Phys. Lett. 100 262605
|
[18] |
Bruno A, de Lange G, Asaad S, van der Enden K L, Langford N K and DiCarlo L 2015 Appl. Phys. Lett. 106 182601
|
[19] |
Chang J B, Vissers M R, Córcoles A D, Sandberg M, Gao J, Abraham D W, Chow J M, Gambetta J M, Beth R M, Keefe G A, Steffen M and Pappas D P 2013 Appl. Phys. Lett. 103 012602
|
[20] |
Sears A P, Petrenko A, Catelani G, Sun L, Paik H, Kirchmair G, Frunzio L, Glazman L I, Girvin S M and Schoelkopf R J 2012 Phys. Rev. B 86 180504
|
[21] |
Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Córcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|