Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 108501    DOI: 10.1088/1674-1056/26/10/108501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators

Ying Jiang(蒋莹)1, Bo Li(李博)2, Bin Wei(魏斌)1, Xu-Bo Guo(郭旭波)1, Bi-Song Cao(曹必松)1, Li-Nan Jiang(姜立楠)1
1. State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China;
2. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
Abstract  In this paper we propose a two-pole varactor-tuned superconducting filter using coplanar waveguide (CPW) spiral-in-spiral-out (SISO) resonators. Novel internal and external coupling structures are introduced to meet the requirements for a tunable filter with a constant absolute bandwidth. The fabricated device has a frequency tuning range of 14.4% at frequencies ranging from 274.1 MHz to 317.7 MHz, a 3-dB bandwidth of 5.14 ±0.06 MHz, and an insertion loss of 0.08 dB-0.70 dB. The simulated and measured results are in excellent agreement with each other.
Keywords:  coplanar waveguide (CPW)      superconducting      tunable filter      varactor  
Received:  17 May 2017      Revised:  19 June 2017      Accepted manuscript online: 
PACS:  85.25.-j (Superconducting devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61371009) and the National High Technology Research and Development Program of China (Grant No. 2014AA032703).
Corresponding Authors:  Bin Wei     E-mail:  weibin@mail.tsinghua.edu.cn

Cite this article: 

Ying Jiang(蒋莹), Bo Li(李博), Bin Wei(魏斌), Xu-Bo Guo(郭旭波), Bi-Song Cao(曹必松), Li-Nan Jiang(姜立楠) Superconducting tunable filter with constant bandwidth using coplanar waveguide resonators 2017 Chin. Phys. B 26 108501

[1] Zeng Z, Yao Y and Zhuang Y 2015 Acta Phys. Sin. 64 164101(in Chinese)
[2] Zhang Q S, Zhu F J and Zhou H M 2015 Chin. Phys. B 24 107506
[3] Xu J, Hong W, Zhang H and Tang H 2017 IEEE Microw. Wireless Compon. Lett. 27 251
[4] Sekiya N 2015 IEEE Trans. Appl. Supercond. 25 1501004
[5] Li Y L, Yang B C and Xu X M 2016 Chin. Phys. B 25 024208
[6] Cao D Y, Liu B H, Wang Z, Huang Y F, Li C F and Guo G C 2015 Sci. Bull. 60 1128
[7] Lin J, Xu Y, Fang Z, Wang M, Wang N, Qiao L, Fang W and Cheng Y 2015 Sci. China-Phys. Mech. Astron. 58 114209
[8] Li X 2015 Sci. Bull. 60 1045
[9] Long H, Huang Y Z, Yang Y D, Zou L X, Xiao J L and Xiao Z X 2015 Sci. China-Phys. Mech. Astron. 58 114205
[10] Gan L and Li Z Y 2015 Sci. China-Phys. Mech. Astron. 58 114203
[11] Wang J J, Glesk I and Chen L R 2016 Sci. Bull. 61 879
[12] Wang L, Lin X W, Hu W, Shao G H, Chen P, Liang L J, Jin B B, Wu P H, Qian H, Lu Y N, Liang X, Zheng Z G and Lu Y Q 2015 Light-Sci. Appl. 4 e253
[13] Nguyen P H, Grewe A, Fesser P, Seifert A, Sinzinger S and Zappe H 2016 Light-Sci. Appl. 5 e16058
[14] Li X H, Zhou H M, Zhang Q S and Hu W W 2016 Chin. Phys. B 25 117505
[15] Wang X, Deng Y, Wang W-T, Yuan H Q, Bai J H and Liu Y 2016 Chin. Phys. Lett. 33 104202
[16] Wang J H, Chen C M, Zheng Y, Wang X B, Yi Y J, Sun X Q, Wang F and Zhang D M 2017 Chin. Phys. B 26 024212
[17] Xu E M, Zhang Z X and Li L 2017 Chin. Phys. Lett. 34 014203
[18] Deng L, Li D, Liu Z, Meng Y, Guo X and Tian Y 2017 Chin. Phys. B 26 024209
[19] Prophet E M, Musolf J, Zuck B F, Jimenez S, Kihlstrom K E and Willemsen B M A 2005 IEEE Trans. Appl. Supercond. 15 956
[20] Park S J, El-Tanani M A, Reines I and Rebeiz G M 2008 IEEE Trans. Microw. Theory Techniq. 56 2348
[21] Ying Z J, Wei B, Cao B S, Guo X B, Zhang X P, Zhang G Y, Li Q R and Feng C 2013 IEEE Microw. Wireless Compon. Lett. 23 19
[22] Suo G N, Guo X B, Cao B S, Wei B, Zhang X P, Shang Z J and Zhang G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 170
[23] Kim B W and Yun S W 2004 IEEE Trans. Microw. Theory Techniq. 52 1279
[24] Sanchez-Renedo M, Gomez-Garcia R, Alonso J I and Briso-Rodriguez C 2005 IEEE Trans. Microw. Theory Techniq. 53 191
[25] Suo G N, Guo X B, Cao B S, Wei B, Zhang X P, Zheng T N and Zhang G Y 2014 IEEE Microw. Wireless Compon. Lett. 24 628
[26] Park S J and Rebeiz G M 2008 IEEE Trans. Microw. Theory Techniq. 56 1137
[27] El-Tanani M A and Rebeiz G M 2010 IEEE Trans. Microw. Theory Techniq. 58 956
[28] Zhang X Y, Xue Q, Chan C H and Hu B J 2010 IEEE Trans. Microw. Theory Techniq. 58 1557
[29] Wang X G, Cho Y H and Yun S W 2012 IEEE Trans. Microw. Theory Techniq. 60 1569
[30] Xiang Q Y, Feng Q Y, Huang X G and Jia D H 2013 IEEE Trans. Microw. Theory Techniq. 61 1124
[31] Zhang Y, Guo X B, Cao B S, Wei B, Zhang X P, Song X K, Suo G N and Zhang G Y 2012 IEEE Trans. Appl. Supercond. 22 1500205
[32] Wen C P 1969 IEEE Trans. Microw. Theory Techniq. 17 1087
[33] Hong J S 2011 Microstrip Filters for RF/Microwave Applications, 2nd edn. (New York:Wiley)
[34] Wang J C, Wei B, Cao B S, Zhang X P, Guo X B and Song X K 2013 IEEE Trans. Appl. Supercond. 23 1502108
[35] Alley G D 1970 IEEE Trans. Microw. Theory Techniq. 18 1028
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[5] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[6] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[9] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Photon number resolvability of multi-pixel superconducting nanowire single photon detectors using a single flux quantum circuit
Hou-Rong Zhou(周后荣), Kun-Jie Cheng(程昆杰), Jie Ren(任洁), Li-Xing You(尤立星),Li-Liang Ying(应利良), Xiao-Yan Yang(杨晓燕), Hao Li(李浩), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(5): 057401.
[13] Pressure-induced phase transitions in the ZrXY (X= Si, Ge, Sn;Y= S, Se, Te) family compounds
Qun Chen(陈群), Juefei Wu(吴珏霏), Tong Chen(陈统), Xiaomeng Wang(王晓梦), Chi Ding(丁弛), Tianheng Huang(黄天衡), Qing Lu(鲁清), and Jian Sun(孙建). Chin. Phys. B, 2022, 31(5): 056201.
[14] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[15] Induced current of high temperature superconducting loops by combination of exciting coil and thermal switch
Jia-Wen Wang(王佳雯), Yin-Shun Wang(王银顺), Hua Chai(柴华), Ling-Feng Zhu(祝凌峰), and Wei Pi(皮伟). Chin. Phys. B, 2022, 31(3): 037402.
No Suggested Reading articles found!