Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070303    DOI: 10.1088/1674-1056/27/7/070303
RAPID COMMUNICATION Prev   Next  

Observation of geometric phase in a dispersively coupled resonator-qutrit system

Libo Zhang(张礼博)1, Chao Song(宋超)1, H Wang(王浩华)1, Shi-Biao Zheng(郑仕标)2
1 Department of Physics, Zhejiang University, Hangzhou 310027, China;
2 Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
Abstract  

We present an experiment of observing the geometric phase in a superconducting circuit where the resonator and the qutrit energy levels are dispersively coupled. The drive applied to the resonator displaces its state components associated with the qutrit's ground state and first-excited state along different circular trajectories in phase space. We identify the resonator's phase-space trajectories by Wigner tomography using an ancilla qubit, following which we observe the difference between the geometric phases associated with these trajectories using Ramsey interferometry. This geometric phase is further used to construct the single-qubit π-phase gate with a process fidelity of 0.851±0.001.

Keywords:  geometric phase      superconducting circuit      Wigner tomography  
Received:  04 March 2018      Revised:  26 April 2018      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB921201) and the National Natural Science Foundation of China (Grant Nos. 11434008 and 11574380).

Corresponding Authors:  H Wang, Shi-Biao Zheng     E-mail:  hhwang@zju.edu.cn;t96034@fzu.edu.cn

Cite this article: 

Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标) Observation of geometric phase in a dispersively coupled resonator-qutrit system 2018 Chin. Phys. B 27 070303

[1] Anandan J 1992 Nature 360 307
[2] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[3] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[4] Jones J A, Vedral V, Ekert A and Castagnoli G 2000 Nature 403 869
[5] Falci G, Fazio R, Palma G M, Siewert J and Vedral V 2000 Nature 407 355
[6] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[7] Wang X B and Keiji M 2001 Phys. Rev. Lett. 87 097901
[8] Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902
[9] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Britton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and Winel D J 2003 Nature 422 412
[10] Zheng S B 2004 Phys. Rev. A 70 052320
[11] Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M and Singh K 2012 New J. Phys. 14 103035
[12] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[13] Tycko R 1987 Phys. Rev. Lett. 58 2281
[14] Suter D, Mueller K T and Pines A 1988 Phys. Rev. Lett. 60 1218
[15] Webb C L, Godun R M, Summy G S, Oberthaler M K, Featonby P D, Foot C J and Burnett K 1999 Phys. Rev. A 60 R1783
[16] Feng G, Xu G and Long G 2013 Phys. Rev. Lett. 110 190501
[17] Leek P J, Fink J M, Blais A, Bianchetti R, Göppl M, Gambetta J M, Schuster D I, Frunzio L, Schoelkopf R J and Wallraff A 2007 Science 318 1889
[18] Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P and Rauch H 2009 Phys. Rev. Lett. 102 030404
[19] Pechal M, Berger S, Abdumalikov A A Jr, Fink J M, Mlynek J A, Steffen L, Wallraff A and Filipp S 2012 Phys. Rev. Lett. 108 170401
[20] Tan X, Zhang D, Zhang Z, Yu Y, Han S and Zhu S 2014 Phys. Rev. Lett. 112 027001
[21] Zhou H, Li Z, Wang H, Chen H, Peng X and Du J 2016 Chin. Phys. Lett. 33 060301
[22] Song C, Zheng S B, Zhang P, Xu K, Zhang L, Guo Q, Liu W, Xu D, Deng H, Huang K, Zheng D, Zhu X and Wang H 2017 Nat. Commun. 8 1061
[23] Paik H, Mezzacapo A, Sandberg M, McClure D T, Abdo B, Córcoles A D, Dial O, Bogorin D F, Plourde B L T, Steffen M, Cross A W, Gambetta J M and Chow Jerry M 2016 Phys. Rev. Lett. 117 250502
[24] Song C, Xu K, Liu W, Yang C, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[25] Gu X, Kockumb A F, Miranowicz A, Liu Y X and Nori F 2017 Phys. Rep. 718 1
[26] Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Y, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y and Zhao S P 2016 Nat. Commun. 7 11018
[27] Zhong Y, Li C, Wang H and Chen Y 2013 Chin. Phys. B 22 110313
[28] Wang H, Mariantoni M, Bialczak R C, Lenander M, Lucero E, Neeley M, O0Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis John M and Cleland A N 2011 Phys. Rev. Lett. 106 060401
[29] Zheng S B 2002 Phys. Rev. A 66 060303
[30] Zheng S B 2012 Phys. Rev. A 85 022128
[31] Vacanti G, Fazio R, Kim M S, Palma G M, Paternostro M and Vedral V 2012 Phys. Rev. A 85 022129
[32] Cross A W and Gambetta J M 2015 Phys. Rev. A 91 032325
[1] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[2] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[3] Geometric phase under the Unruh effect with intermediate statistics
Jun Feng(冯俊), Jing-Jun Zhang(张精俊), and Qianyi Zhang(张倩怡). Chin. Phys. B, 2022, 31(5): 050312.
[4] Quantum simulation of lattice gauge theories on superconducting circuits: Quantum phase transition and quench dynamics
Zi-Yong Ge(葛自勇), Rui-Zhen Huang(黄瑞珍), Zi-Yang Meng(孟子杨), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(2): 020304.
[5] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[6] Speeding up generation of photon Fock state in a superconducting circuit via counterdiabatic driving
Xin-Ping Dong(董新平), Xiao-Jing Lu(路晓静), Ming Li(李明), Zheng-Yin Zhao(赵正印), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(4): 044214.
[7] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[8] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[9] Controllable photon echo phase induced by modulated pulses and chirped beat detection
Xian-Yang Zhang(张显扬), Shuang-Gen Zhang(张双根), Hua-Di Zhang(张化迪), Xiu-Rong Ma(马秀荣). Chin. Phys. B, 2019, 28(2): 024207.
[10] Speeding up transmissions of unknown quantum information along Ising-type quantum channels
W J Guo(郭伟杰), L F Wei(韦联福). Chin. Phys. B, 2017, 26(1): 010303.
[11] A method for generating double-ring-shaped vector beams
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农). Chin. Phys. B, 2016, 25(7): 074201.
[12] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[13] Induced modification of geometric phase of a qubit coupled to an XY spin chain by the Dzyaloshinsky–Moriya interaction
Zhang Ai-Ping (张爱萍), Li Fu-Li (李福利). Chin. Phys. B, 2013, 22(3): 030308.
[14] Geometric phases in qubit-oscillator system beyond conventional rotating-wave approximation
Wang Yue-Ming(王月明), Du Guan(杜冠), and Liang Jiu-Qing(梁九卿) . Chin. Phys. B, 2012, 21(4): 044207.
[15] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
No Suggested Reading articles found!