Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 048201    DOI: 10.1088/1674-1056/ad1f4d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Phase-field simulations of the effect of temperature and interface for zirconium δ-hydrides

Zi-Hang Chen(陈子航)1,2,3,†, Jie Sheng(盛杰)3,†, Yu Liu(刘瑜)3,‡, Xiao-Ming Shi(施小明)4, Houbing Huang(黄厚兵)1,2, Ke Xu(许可)1,2,3, Yue-Chao Wang(王越超)3, Shuai Wu(武帅)1,2,3, Bo Sun(孙博)3, Hai-Feng Liu(刘海风)3, and Hai-Feng Song(宋海峰)3
1 School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China;
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Hydride precipitation in zirconium cladding materials can damage their integrity and durability. Service temperature and material defects have a significant effect on the dynamic growth of hydrides. In this study, we have developed a phase-field model based on the assumption of elastic behaviour within a specific temperature range (613 K—653 K). This model allows us to study the influence of temperature and interfacial effects on the morphology, stress, and average growth rate of zirconium hydride. The results suggest that changes in temperature and interfacial energy influence the length-to-thickness ratio and average growth rate of the hydride morphology. The ultimate determinant of hydride orientation is the loss of interfacial coherency, primarily induced by interfacial dislocation defects and quantifiable by the mismatch degree q. An escalation in interfacial coherency loss leads to a transition of hydride growth from horizontal to vertical, accompanied by the onset of redirection behaviour. Interestingly, redirection occurs at a critical mismatch level, denoted as qc, and remains unaffected by variations in temperature and interfacial energy. However, this redirection leads to an increase in the maximum stress, which may influence the direction of hydride crack propagation. This research highlights the importance of interfacial coherency and provides valuable insights into the morphology and growth kinetics of hydrides in zirconium alloys.
Keywords:  zirconium hydride      phase-field method      temperature effect      mismatch degree  
Received:  25 November 2023      Revised:  04 January 2024      Accepted manuscript online:  17 January 2024
PACS:  82.20.Wt (Computational modeling; simulation)  
  81.30.-t (Phase diagrams and microstructures developed by solidification and solid-solid phase transformations)  
  05.70.Np (Interface and surface thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2230401, U1930401, and 12004048), the National Key Research and Development Program of China (Grant No. 2021YFB3501503), the Science Challenge Project (Grant No. TZ2018002), and the Foundation of LCP. We thank the Tianhe platforms at the National Supercomputer Center in Tianjin.
Corresponding Authors:  Yu Liu     E-mail:  liu_yu@iapcm.ac.cn

Cite this article: 

Zi-Hang Chen(陈子航), Jie Sheng(盛杰), Yu Liu(刘瑜), Xiao-Ming Shi(施小明), Houbing Huang(黄厚兵), Ke Xu(许可), Yue-Chao Wang(王越超), Shuai Wu(武帅), Bo Sun(孙博), Hai-Feng Liu(刘海风), and Hai-Feng Song(宋海峰) Phase-field simulations of the effect of temperature and interface for zirconium δ-hydrides 2024 Chin. Phys. B 33 048201

[1] Hedayat A 2017 Nuclear Engineering and Design 313 190
[2] Bair J, Zaeem M A and Tonks M 2015 J. Nucl. Mater. 466 12
[3] Motta A T, Capolungo L, Chen L Q, Cinbiz M N, Daymond M R, Koss D A, Lacroix E, Pastore G, Simon P C A, Tonks M R, et al. 2019 J. Nucl. Mater. 518 440
[4] Ensor B, Lucente A, Frederick M, Sutli J and Motta A 2017 J. Nucl. Mater. 496 301
[5] Ghosal S, Palit G and De P 2001 Mineral Procesing and Extractive Metallurgy Review 22 519
[6] Kim S, Kang J H and Lee Y 2022 J. Nucl. Mater. 559 153393
[7] Zuzek E, Abriata J, San-Martin A and Manchester F 1990 Bulletin of Alloy Phase Diagrams 11 385
[8] Daum R, Chu Y and Motta A 2009 J. Nucl. Mater. 392 453
[9] Puls M P 2012 The effect of hydrogen and hydrides on the integrity of zirconium alloy components:delayed hydride cracking (Springer Science & Business Media)
[10] Han G, Zhao Y, Zhou C, Lin D Y, Zhu X, Zhang J, Hu S and Song H 2019 Acta Materialia 165 528
[11] Heo T W, Colas K B, Motta A T and Chen L Q 2019 Acta Materialia 181 262
[12] Colas K, Motta A, Almer J, Daymond M, Kerr M, Banchik A, Vizcaino P and Santisteban J R 2010 Acta Materialia 58 6575
[13] Colas K, Motta A, Daymond M, Kerr M and Almer J 2010 Journal of ASTM International 8 1
[14] Colas K B, Motta A T, Daymond M R and Almer J D 2013 J. Nucl. Mater. 440 586
[15] Kwon Y, Thornton K and Voorhees P W 2007 Phys. Rev. E 75 021120
[16] Seol D, Hu S, Li Y, Shen J, Oh K and Chen L 2003 Metals and Materials International 9 61
[17] Kwon Y, Thornton K and Voorhees P 2009 Europhys. Lett. 86 46005
[18] Mendoza R, Savin I, Thornton K and Voorhees P 2004 Nat. Mater. 3 385
[19] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Annual Review of Materials Research 32 163
[20] Yang C, Li S, Wang X, Wang J and Huang H 2020 Comput. Mater. Sci. 171 109220
[21] Yang C, Liu Y, Huang H, Wu S, Sheng J, Shi X, Wang J, Han G and Song H 2021 Mater. Res. Express 8 106518
[22] Wang Y U, Jin Y M and Khachaturyan A G 2004 Acta Mater. 52 81
[23] Shi X, Wang J, Xu J, Cheng X and Huang H 2022 Acta Mater. 237 118147
[24] Shi X, Wang J, Cheng X and Huang H 2022 Advanced Theory and Simulations 5 2100345
[25] Shi X, Wang J, Cheng X and Huang H 2022 Physica Status Solidi (RRL)-Rapid Research Letters 16 2100416
[26] Zhao Z, Blat-Yrieix M, Morniroli J, Legris A, Thuinet L, Kihn Y, Ambard A, Legras L, Limback M, Kammenzind B, et al. 2008 Characterization of zirconium hydrides and phase field approach to a mesoscopic-scale modeling of their precipitation (ASTM International)
[27] Thuinet L, De Backer A and Legris A 2012 Acta Mater. 60 5311
[28] Thuinet L, Legris A, Zhang L and Ambard A 2013 J. Nucl. Mater. 438 32
[29] Ma X, Shi S Q, Woo C and Chen L 2002 Scripta Materialia 47 237
[30] Ma X, Shi S Q, Woo C and Chen L 2002 Mater. Sci. Eng. A 334 6
[31] Ma X, Shi S Q, Woo C and Chen L 2002 Computat. Mater. Sci. 23 283
[32] Ma X, Shi S Q, Woo C and Chen L 2006 Mechanics of Materials 38 3
[33] Shi S Q and Xiao Z 2015 J. Nucl. Mater. 459 323
[34] Bair J, Zaeem M A and Tonks M 2016 J. Phys. D:Appl. Phys. 49 405302
[35] Jokisaari A and Thornton K 2015 Calphad 51 334
[36] Bair J, Zaeem M A and Schwen D 2017 Acta Mater. 123 235
[37] Lin J l and Heuser B J 2019 Comput. Mater. Sci. 156 224
[38] Shin W and Chang K 2020 Comput. Mater. Sci. 182 109775
[39] Simon P C, Aagesen L K, Jokisaari A M, Chen L Q, Daymond M R, Motta A T and Tonks M R 2021 J. Nucl. Mater. 557 153303
[40] Wu S, Sheng J, Yang C, Shi X, Huang H, Liu Y and Song H 2022 Frontiers in Materials 9 916593
[41] Kim S G, Kim W T and Suzuki T 1999 Phys. Rev. E 60 7186
[42] Steinbach I and Apel M 2006 Physica D 217 153
[43] Dupin N, Ansara I, Servant C, Toolon C, Lemaignan C and Brachet J 1999 J. Nucl. Mater. 275 287
[44] Zhong Y and Macdonald D D 2012 J. Nucl. Mater. 423 87
[45] Sheng J, Wang Y C, Liu Y, Wu S, Xu K, Chen Z H, Sun B, Liu H F and Song H F 2022 Comput. Mater. Sci. 213 111663
[46] Sheng J, Liu Y, Shi X M, Wang Y C, Chen Z H, Xu K, Wu S, Huang H B, Sun B, Liu H F and Song H F 2024 Comput. Mater. Sci. 235 112779
[47] Mai W, Soghrati S and Buchheit R G 2016 Corrosion Science 110 157
[48] Yang C, Huang H, Liu W, Wang J, Wang J, Jafri H M, Liu Y, Han G, Song H and Chen L Q 2021 Adv. Theor. Simul. 4 2000162
[49] Morris Jr J 2010 Phil. Mag. 90 3
[50] Lubliner J 2008 Plasticity theory, revised edn.
[51] Louchez M A, Thuinet L, Besson R and Legris A 2017 Comput. Mater. Sci. 132 62
[52] Zhang Y, Bai X M, Yu J, Tonks M R, Noordhoek M J and Phillpot S R 2016 Acta Mater. 111 357
[53] Olsson P, Massih A, Blomqvist J, Holston A M A and Bjerken C 2014 Comput. Mater. Sci. 86 211
[54] Porter D A and Easterling K E 2009 Phase transformations in metals and alloys (revised reprint) (CRC press)
[55] Steinbrück M, Birchley J, Boldyrev A, Goryachev A, Grosse M, Haste T, H ozer Z, Kisselev A, Nalivaev V, Semishkin V, et al. 2010 Prog. Nucl. Energy 52 19
[56] Jokisaari A M 2016 Multiphysics Phase Field Modeling of Hydrogen Diffusion and δ-Hydride Precipitation in α-Zirconium (Ph.D. thesis)
[57] Massih A R and Jernkvist L O 2009 Comput. Mater. Sci. 46 1091
[58] Liu S M, Ishii A, Mi S B, Ogata S, Li J and Han W Z 2022 Small 18 2105881
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt% Zn alloy
Wei-Peng Chen(陈伟鹏), Hua Hou(侯华), Yun-Tao Zhang(张云涛), Wei Liu(柳伟), and Yu-Hong Zhao(赵宇宏). Chin. Phys. B, 2023, 32(11): 118103.
[3] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[4] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[5] Effect of the particle temperature on lift force of nanoparticle in a shear rarefied flow
Jun-Jie Su(苏俊杰), Jun Wang(王军), and Guo-Dong Xia(夏国栋). Chin. Phys. B, 2021, 30(7): 075101.
[6] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[7] Multi-phase field simulation of grain growth in multiple phase transformations of a binary alloy
Li Feng(冯力), Beibei Jia(贾北北), Changsheng Zhu(朱昶胜), Guosheng An(安国升), Rongzhen Xiao(肖荣振), Xiaojing Feng(冯小静). Chin. Phys. B, 2017, 26(8): 080504.
[8] Hybrid temperature effect on a quartz crystal microbalance resonator in aqueous solutions
Qiang Li(李强), Yu Gu(谷宇), Bin Xie(谢斌). Chin. Phys. B, 2017, 26(6): 067704.
[9] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[10] Phase-field study of the second phase particle effect on texture evolution of polycrystalline material
Lu Yan-Li (卢艳丽), Zhang Liu-Chao (张刘超), Zhou Ying-Ying (周影影), Chen Zheng (陈铮). Chin. Phys. B, 2014, 23(6): 069102.
[11] Stability of operation versus temperature of a three-phase clock-driven chaotic circuit
Zhou Ji-Chao (周继超), Hyunsik Son, Namtae Kim, Han Jung Song. Chin. Phys. B, 2013, 22(12): 120506.
[12] Vibrational frequency of a strong-coupling polaron in a quantum rod at finite temperatures
Ding Zhao-Hua(丁朝华) and Xiao Jing-Lin(肖景林) . Chin. Phys. B, 2011, 20(9): 097104.
[13] Size and temperature effects on electric properties of CdTe/ZnTe quantum rings
Woo-Pyo Hong and Seoung-Hwan Park . Chin. Phys. B, 2011, 20(9): 098502.
[14] The effect of deposition temperature on the intermixing and microstructure of Fe/Ni thin film
Chen Shang-Da(陈尚达), Wang Tao(王涛), Zheng De-Li(郑德立), and Zhou Yi-Chun(周益春). Chin. Phys. B, 2010, 19(12): 126801.
[15] Phase-field simulation of the effect of interaction among ordered domains on interdiffusion in Ni--Al--Cr alloys
Zhang Yu-Xiang(张玉祥), Wang Jin-Cheng(王锦程), Yang Yu-Juan(杨玉娟), Yang Gen-Cang(杨根仓), and Zhou Yao-He(周尧和). Chin. Phys. B, 2009, 18(10): 4407-4412.
No Suggested Reading articles found!