CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3 |
Wei-Bin Song(宋伟宾)1,2, Guo-Qiang Xi(席国强)3, Zhao Pan(潘昭)2,†, Jin Liu(刘锦)2, Xu-Bin Ye(叶旭斌)2, Zhe-Hong Liu(刘哲宏)2, Xiao Wang(王潇)2, Peng-Fei Shan(单鹏飞)2, Lin-Xing Zhang(张林兴)3, Nian-Peng Lu(鲁年鹏)2,4, Long-Long Fan(樊龙龙)5, Xiao-Mei Qin(秦晓梅)1,‡, and You-Wen Long(龙有文)2,4,§ |
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties. New Bi-based perovskite thin films Bi(Cu$_{1/2}$Ti$_{1/2}$)O$_{3}$-PbTiO$_{3}$ (BCT-PT) are deposited on Pt(111)/Ti/SiO$_{2}$/Si substrates in the present study by the traditional sol-gel method. Their structures and related ferroelectric and fatigue characteristics are studied in-depth. The BCT-PT thin films exhibit good crystallization within the phase-pure perovskite structure, besides, they have a predominant (100) orientation together with a dense and homogeneous microstructure. The remnant polarization (2$P_{\rm r}$) values at 30 μC/cm$^{2}$ and 16 μC/cm$^{2}$ are observed in 0.1BCT-0.9PT and 0.2BCT-0.8PT thin films, respectively. More intriguingly, although the polarization values are not so high, 0.2BCT-0.8PT thin films show outstanding polarization fatigue properties, with a high switchable polarization of 93.6% of the starting values after 10$^{8}$ cycles, indicating promising applications in ferroelectric memories.
|
Received: 12 December 2023
Revised: 04 February 2024
Accepted manuscript online: 19 February 2024
|
PACS:
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
77.84.Cg
|
(PZT ceramics and other titanates)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 22271309, 21805215, 11934017, 12261131499, and 11921004), the Beijing Natural Science Foundation (Grant No. Z200007), and the Fund from the Chinese Academy of Sciences (Grant No. XDB33000000). |
Corresponding Authors:
Zhao Pan, Xiao-Mei Qin, You-Wen Long
E-mail: zhaopan@iphy.ac.cn;xmqin@shnu.edu.cn;ywlong@iphy.ac.cn
|
Cite this article:
Wei-Bin Song(宋伟宾), Guo-Qiang Xi(席国强), Zhao Pan(潘昭), Jin Liu(刘锦), Xu-Bin Ye(叶旭斌), Zhe-Hong Liu(刘哲宏), Xiao Wang(王潇), Peng-Fei Shan(单鹏飞), Lin-Xing Zhang(张林兴), Nian-Peng Lu(鲁年鹏), Long-Long Fan(樊龙龙), Xiao-Mei Qin(秦晓梅), and You-Wen Long(龙有文) Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3 2024 Chin. Phys. B 33 057701
|
[1] Damjanovic D 1998 Rep. Prog. Phys. 61 1267 [2] Scott J F 2007 Science 315 954 [3] Wang Y L, Zhao H Q, Zhang L X, Chen J and Xing X R 2017 Phys. Chem. Chem. Phys. 19 17493 [4] Yan Y X, Li Z M, Jin L, Du H L, Zhang M L, Zhang D Y and Hao Y 2021 ACS Appl. Mater. Interfaces 13 38517 [5] Eitel R E, Randall C A, Shrout T R and Park S E 2002 Jpn. J. Appl. Phys. 41 2099 [6] Grinberg I, Suchomel M R, Davies P K and Rappe A M 2005 J. Appl. Phys. 98 094111 [7] Fan L L, Li Q, Zhang L X, Shi N K, Liu H, Ren Y, Chen J and Xing X R 2020 Inorg. Chem. Front. 7 1190 [8] Yoshimura T and Trolier-McKinstry S 2002 Appl. Phys. Lett. 81 2065 [9] Suchomel M R, Fogg A M, Allix M, Niu H, Claridge J B and Rosseinsky M J 2006 Chem. Mater. 18 4987 [10] Belik A A, Wuernisha T, Kamiyama T, Mori K, Maie M, Nagai T, Matsui Y and Takayama-Muromachi E 2006 Chem. Mater. 18 133 [11] Belik A A 2012 J. Solid State Chem. 195 32 [12] Pan Z, Chen J, Yu R Z, et al. 2019 Chem. Mater. 31 1296 [13] Pan Z, Jiang X, Chen J, et al. 2018 Inorg. Chem. Front. 5 1277 [14] Pan Z, Chen J, Jiang X X, Lin Z S, Zhang H B, Ren Y, Azuma M and Xing X R 2019 Inorg. Chem. Front. 6 1990 [15] Liu L D, Zuo R Z, Sun Q and Liang Q 2013 J. Sol-Gel Sci. Technol. 65 384 [16] Zhang L X, Chen J, Zhao H Q, Fan L L, Rong Y C, Deng J X, Yu R B and Xing X R 2013 Appl. Phys. Lett. 103 082902 [17] Xie Z K, Peng B, Zhang J, Zhang X H, Yue Z X and Li L T 2015 Ceram. Int. 41 S206 [18] Cohen R E 1992 Nature 358 136 [19] Kuroiwa Y, Aoyagi S, Sawada A, et al. 2001 Phys. Rev. Lett. 87 217601 [20] Yashima M, Omoto K, Chen J, Kato H and Xing X 2001 Chem. Mater. 23 3135 [21] Zhong C F, Wang X H, Wu Y Y and Li L T 2010 J. Am. Ceram. Soc. 93 3993 [22] Cho C R, Lee W J, Yu B G and Kim B W 1999 J. Appl. Phys. 86 2700 [23] Lu C J, Liu X L, Chen X Q, et al. 2006 Appl. Phys. Lett. 89 062905 [24] Lu C J, Ye W N, Qi Y J, Liu X L, Senz S and Hesse D 2008 Phys. Stat. Sol. (a) 205 2711 [25] Wang Y L, Zhao H Q, Zhang L X, et al. 2016 Inorg. Chem. Front. 3 1473 [26] Lee S H, Jang H M, Cho S M, Yi G C 2002 Appl. Phys. Lett. 80 3165 [27] Akdogan E K, Rawn C J, Porter W D, Payzant E A and Safari A 2005 J. Appl. Phys. 97 084305 [28] Pan Z, Fang Y W, Nishikubo T, Hu L, Kawaguchi S and Azuma M 2022 Chem. Mater. 34 2798 [29] Chen J, Nittala K, Jones J L, Hu P and Xing X 2010 Appl. Phys. Lett. 96 252908 [30] Burns G and Scott B A 1970 Phys. Rev. Lett. 25 167 [31] Chen J, Tan X, Jo W and Rödel J 2009 J. Appl. Phys. 106 034109 [32] Leist T, Granzow T, Jo W and Rödel J 2010 J. Appl. Phys. 108 014103 [33] Cheng M Q, Zhao E D, Jiang F J, et al. 2021 Ceram. Int. 47 18417 [34] Liu J S, Zhang S R, Zeng H Z, Yang C T and Yuan Y 2005 Phys. Rev. B 72 172101 [35] Pan Z, Chen J, Fan L L, et al. 2017 Inorg. Chem. Front. 4 1352 [36] Lampert M A 1956 Phys. Rev. 103 1648 [37] Khan M A, Comyn T P and Bell A J 2008 Appl. Phys. Lett. 92 072908 [38] Zhang L X, Chen J, Zhao H Q, Fan L L, Rong Y C, Deng J X, Yu R B and Xing X R 2013 Dalton Trans. 42 585 [39] Bai W, Meng X J, Lin T, et al. 2009 J. Appl. Phys. 106 124908 [40] Lou X J 2009 J. Appl. Phys. 105 024101 [41] Hannu J, Peräntie J, Stratulat S M, Jantunen H and Tyunina M 2016 J. Adv. Dielect. 6 1650026 [42] Rhun G L, Poullain G, Bouregba R and Leclerc G 2005 J. Eur. Ceram. Soc. 25 2281 [43] Sidorkin A S, Nesterenko L P, Smirnov A L, Smirnov G L, Ryabtsev S V and Sidorkin A A 2008 Phys. Solid State 50 2157 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|