Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 057701    DOI: 10.1088/1674-1056/ad2a71
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3

Wei-Bin Song(宋伟宾)1,2, Guo-Qiang Xi(席国强)3, Zhao Pan(潘昭)2,†, Jin Liu(刘锦)2, Xu-Bin Ye(叶旭斌)2, Zhe-Hong Liu(刘哲宏)2, Xiao Wang(王潇)2, Peng-Fei Shan(单鹏飞)2, Lin-Xing Zhang(张林兴)3, Nian-Peng Lu(鲁年鹏)2,4, Long-Long Fan(樊龙龙)5, Xiao-Mei Qin(秦晓梅)1,‡, and You-Wen Long(龙有文)2,4,§
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China;
5 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Bi-based perovskite ferroelectric thin films have wide applications in electronic devices due to their excellent ferroelectric properties. New Bi-based perovskite thin films Bi(Cu$_{1/2}$Ti$_{1/2}$)O$_{3}$-PbTiO$_{3}$ (BCT-PT) are deposited on Pt(111)/Ti/SiO$_{2}$/Si substrates in the present study by the traditional sol-gel method. Their structures and related ferroelectric and fatigue characteristics are studied in-depth. The BCT-PT thin films exhibit good crystallization within the phase-pure perovskite structure, besides, they have a predominant (100) orientation together with a dense and homogeneous microstructure. The remnant polarization (2$P_{\rm r}$) values at 30 μC/cm$^{2}$ and 16 μC/cm$^{2}$ are observed in 0.1BCT-0.9PT and 0.2BCT-0.8PT thin films, respectively. More intriguingly, although the polarization values are not so high, 0.2BCT-0.8PT thin films show outstanding polarization fatigue properties, with a high switchable polarization of 93.6% of the starting values after 10$^{8}$ cycles, indicating promising applications in ferroelectric memories.
Keywords:  ferroelectric      thin films      perovskite      PbTiO$_{3}$-BiMeO$_{3}$  
Received:  12 December 2023      Revised:  04 February 2024      Accepted manuscript online:  19 February 2024
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  77.84.Cg (PZT ceramics and other titanates)  
  77.84.Cg (PZT ceramics and other titanates)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 22271309, 21805215, 11934017, 12261131499, and 11921004), the Beijing Natural Science Foundation (Grant No. Z200007), and the Fund from the Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Zhao Pan, Xiao-Mei Qin, You-Wen Long     E-mail:  zhaopan@iphy.ac.cn;xmqin@shnu.edu.cn;ywlong@iphy.ac.cn

Cite this article: 

Wei-Bin Song(宋伟宾), Guo-Qiang Xi(席国强), Zhao Pan(潘昭), Jin Liu(刘锦), Xu-Bin Ye(叶旭斌), Zhe-Hong Liu(刘哲宏), Xiao Wang(王潇), Peng-Fei Shan(单鹏飞), Lin-Xing Zhang(张林兴), Nian-Peng Lu(鲁年鹏), Long-Long Fan(樊龙龙), Xiao-Mei Qin(秦晓梅), and You-Wen Long(龙有文) Structure, ferroelectric, and enhanced fatigue properties of sol-gel-processed new Bi-based perovskite thin films of Bi(Cu1/2Ti1/2)O3-PbTiO3 2024 Chin. Phys. B 33 057701

[1] Damjanovic D 1998 Rep. Prog. Phys. 61 1267
[2] Scott J F 2007 Science 315 954
[3] Wang Y L, Zhao H Q, Zhang L X, Chen J and Xing X R 2017 Phys. Chem. Chem. Phys. 19 17493
[4] Yan Y X, Li Z M, Jin L, Du H L, Zhang M L, Zhang D Y and Hao Y 2021 ACS Appl. Mater. Interfaces 13 38517
[5] Eitel R E, Randall C A, Shrout T R and Park S E 2002 Jpn. J. Appl. Phys. 41 2099
[6] Grinberg I, Suchomel M R, Davies P K and Rappe A M 2005 J. Appl. Phys. 98 094111
[7] Fan L L, Li Q, Zhang L X, Shi N K, Liu H, Ren Y, Chen J and Xing X R 2020 Inorg. Chem. Front. 7 1190
[8] Yoshimura T and Trolier-McKinstry S 2002 Appl. Phys. Lett. 81 2065
[9] Suchomel M R, Fogg A M, Allix M, Niu H, Claridge J B and Rosseinsky M J 2006 Chem. Mater. 18 4987
[10] Belik A A, Wuernisha T, Kamiyama T, Mori K, Maie M, Nagai T, Matsui Y and Takayama-Muromachi E 2006 Chem. Mater. 18 133
[11] Belik A A 2012 J. Solid State Chem. 195 32
[12] Pan Z, Chen J, Yu R Z, et al. 2019 Chem. Mater. 31 1296
[13] Pan Z, Jiang X, Chen J, et al. 2018 Inorg. Chem. Front. 5 1277
[14] Pan Z, Chen J, Jiang X X, Lin Z S, Zhang H B, Ren Y, Azuma M and Xing X R 2019 Inorg. Chem. Front. 6 1990
[15] Liu L D, Zuo R Z, Sun Q and Liang Q 2013 J. Sol-Gel Sci. Technol. 65 384
[16] Zhang L X, Chen J, Zhao H Q, Fan L L, Rong Y C, Deng J X, Yu R B and Xing X R 2013 Appl. Phys. Lett. 103 082902
[17] Xie Z K, Peng B, Zhang J, Zhang X H, Yue Z X and Li L T 2015 Ceram. Int. 41 S206
[18] Cohen R E 1992 Nature 358 136
[19] Kuroiwa Y, Aoyagi S, Sawada A, et al. 2001 Phys. Rev. Lett. 87 217601
[20] Yashima M, Omoto K, Chen J, Kato H and Xing X 2001 Chem. Mater. 23 3135
[21] Zhong C F, Wang X H, Wu Y Y and Li L T 2010 J. Am. Ceram. Soc. 93 3993
[22] Cho C R, Lee W J, Yu B G and Kim B W 1999 J. Appl. Phys. 86 2700
[23] Lu C J, Liu X L, Chen X Q, et al. 2006 Appl. Phys. Lett. 89 062905
[24] Lu C J, Ye W N, Qi Y J, Liu X L, Senz S and Hesse D 2008 Phys. Stat. Sol. (a) 205 2711
[25] Wang Y L, Zhao H Q, Zhang L X, et al. 2016 Inorg. Chem. Front. 3 1473
[26] Lee S H, Jang H M, Cho S M, Yi G C 2002 Appl. Phys. Lett. 80 3165
[27] Akdogan E K, Rawn C J, Porter W D, Payzant E A and Safari A 2005 J. Appl. Phys. 97 084305
[28] Pan Z, Fang Y W, Nishikubo T, Hu L, Kawaguchi S and Azuma M 2022 Chem. Mater. 34 2798
[29] Chen J, Nittala K, Jones J L, Hu P and Xing X 2010 Appl. Phys. Lett. 96 252908
[30] Burns G and Scott B A 1970 Phys. Rev. Lett. 25 167
[31] Chen J, Tan X, Jo W and Rödel J 2009 J. Appl. Phys. 106 034109
[32] Leist T, Granzow T, Jo W and Rödel J 2010 J. Appl. Phys. 108 014103
[33] Cheng M Q, Zhao E D, Jiang F J, et al. 2021 Ceram. Int. 47 18417
[34] Liu J S, Zhang S R, Zeng H Z, Yang C T and Yuan Y 2005 Phys. Rev. B 72 172101
[35] Pan Z, Chen J, Fan L L, et al. 2017 Inorg. Chem. Front. 4 1352
[36] Lampert M A 1956 Phys. Rev. 103 1648
[37] Khan M A, Comyn T P and Bell A J 2008 Appl. Phys. Lett. 92 072908
[38] Zhang L X, Chen J, Zhao H Q, Fan L L, Rong Y C, Deng J X, Yu R B and Xing X R 2013 Dalton Trans. 42 585
[39] Bai W, Meng X J, Lin T, et al. 2009 J. Appl. Phys. 106 124908
[40] Lou X J 2009 J. Appl. Phys. 105 024101
[41] Hannu J, Peräntie J, Stratulat S M, Jantunen H and Tyunina M 2016 J. Adv. Dielect. 6 1650026
[42] Rhun G L, Poullain G, Bouregba R and Leclerc G 2005 J. Eur. Ceram. Soc. 25 2281
[43] Sidorkin A S, Nesterenko L P, Smirnov A L, Smirnov G L, Ryabtsev S V and Sidorkin A A 2008 Phys. Solid State 50 2157
[1] Electronic structure and effective mass of pristine and Cl-doped CsPbBr3
Zhiyuan Wei(魏志远), Yu-Hao Wei(魏愉昊), Shendong Xu(徐申东), Shuting Peng(彭舒婷), Makoto Hashimoto, Donghui Lu(路东辉), Xu Pan(潘旭), Min-Quan Kuang(匡泯泉), Zhengguo Xiao(肖正国), and Junfeng He(何俊峰). Chin. Phys. B, 2024, 33(5): 057403.
[2] Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平). Chin. Phys. B, 2024, 33(4): 047802.
[3] Stable photocurrent—voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
[4] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[5] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[6] Modeling the performance of perovskite solar cells with inserting porous insulating alumina nanoplates
Zhaoyao Pan(潘赵耀), Jinpeng Yang(杨金彭), and Xiaoshuang Shen(沈小双). Chin. Phys. B, 2024, 33(3): 038501.
[7] Infrared optical absorption of Fröhlich polarons in metal halide perovskites
Yu Cui(崔钰), Xiao-Yi Liu(刘晓逸), Xu-Fei Ma(马旭菲), Jia-Pei Deng(邓加培), Yi-Yan Liu(刘怡言), and Zi-Wu Wang(王子武). Chin. Phys. B, 2023, 32(9): 097102.
[8] Impact of annealing temperature on the ferroelectric properties of W/Hf0.5Zr0.5O2/W capacitor
Dao Wang(王岛), Yan Zhang(张岩), Yongbin Guo(郭永斌), Zhenzhen Shang(尚真真), Fangjian Fu(符方健), and Xubing Lu(陆旭兵). Chin. Phys. B, 2023, 32(9): 097701.
[9] Electronic structure of cuprate-nickelate infinite-layer heterostructure
Dachuan Chen(陈大川), Paul Worm, Liang Si(司良), Chunxiao Zhang(张春小), Fenglin Deng(邓凤麟), Peiheng Jiang(蒋沛恒), and Zhicheng Zhong(钟志诚). Chin. Phys. B, 2023, 32(8): 087105.
[10] Charge trapping effect at the interface of ferroelectric/interlayer in the ferroelectric field effect transistor gate stack
Xiaoqing Sun(孙晓清), Hao Xu(徐昊), Junshuai Chai(柴俊帅), Xiaolei Wang(王晓磊), and Wenwu Wang(王文武). Chin. Phys. B, 2023, 32(8): 087701.
[11] Critical behavior in the epitaxial growth of two-dimensional tellurium films on SrTiO3 (001) substrates
Haimin Zhang(张海民), Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2023, 32(6): 066802.
[12] Exploring plasmons weakly coupling to perovskite excitons with tunable emission by energy transfer
Guo-Dong Yan(严国栋), Zhen-Hua Zhang(张振华), Heng Guo(郭衡), Jin-Ping Chen(陈金平),Qing-Song Jiang(蒋青松), Qian-Nan Cui(崔乾楠), Zeng-Liang Shi(石增良), and Chun-Xiang Xu(徐春祥). Chin. Phys. B, 2023, 32(6): 067302.
[13] Visualizing interface states in In2Se3–WSe2 monolayer lateral heterostructures
Da Huo(霍达), Yusong Bai(白玉松), Xiaoyu Lin(林笑宇), Jinghao Deng(邓京昊), Zemin Pan(潘泽敏), Chao Zhu(朱超), Chuansheng Liu(刘传胜), and Chendong Zhang(张晨栋). Chin. Phys. B, 2023, 32(5): 056803.
[14] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[15] Domain size and charge defects affecting the polarization switching of antiferroelectric domains
Jinghao Zhu(朱静浩), Zhen Liu(刘震), Boyi Zhong(钟柏仪), Yaojin Wang(汪尧进), and Baixiang Xu(胥柏香). Chin. Phys. B, 2023, 32(4): 047701.
No Suggested Reading articles found!