|
|
Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate |
Zhen-Xia Niu(牛真霞)1 and Chao Gao(高超)1,2,† |
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract Manipulating nonlinear excitations, including solitons and vortices, is an essential topic in quantum many-body physics. A new progress in this direction is a protocol proposed in [Phys. Rev. Res. 2 043256 (2020)] to produce dark solitons in a one-dimensional atomic Bose-Einstein condensate (BEC) by quenching inter-atomic interaction. Motivated by this work, we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics. For an isotropic disk trap with a hard-wall boundary, we find that successive inward-moving ring dark solitons (RDSs) can be induced from the edge, and the number of RDSs can be controlled by tuning the ratio of the after- and before-quench interaction strength across different critical values. The role of the quench played on the profiles of the density, phase, and sound velocity is also investigated. Due to the snake instability, the RDSs then become vortex-antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction. By tuning the geometry of the box traps, demonstrated as polygonal ones, more subtle dynamics of solitons and vortices are enabled. Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
|
Received: 03 October 2023
Revised: 20 November 2023
Accepted manuscript online: 01 December 2023
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
47.35.Fg
|
(Solitary waves)
|
|
47.32.C-
|
(Vortex dynamics)
|
|
52.35.Mw
|
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
|
|
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LQ22A040006, LY21A040004, LR22A040001, and LZ21A040001) and the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074342). |
Corresponding Authors:
Chao Gao
E-mail: gaochao@zjnu.edu.cn
|
Cite this article:
Zhen-Xia Niu(牛真霞) and Chao Gao(高超) Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate 2024 Chin. Phys. B 33 020314
|
[1] Kengne E, Liu W M and Malomed B A 2021 Phys. Rep. 899 1 [2] Zhai H 2021 Ultracold Atomic Physics (Cambridge: Cambridge University Press) [3] Adamatzky A 2016 Advances in unconventional computing (Berlin: Springer) [4] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663 [5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97 [6] Fritsch A R, Lu M, Reid G H, Piñeiro A M and Spielman I B 2020 Phys. Rev. A 101 053629 [7] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401 [8] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498 [9] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806 [10] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476 [11] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628 [12] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403 [13] Zakharov E and Rubenchik A M 1974 Sov. Phys. JETP 38 494 [14] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett. 113 065302 [15] Kivshar Y S and Pelinovsky D E 2000 Phys. Rep. 331 117 [16] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Kivshar Y S 2003 Phys. Rev. Lett. 90 120403 [17] Ma M, Carretero-González R, Kevrekidis P G, Frantzeskakis D J and Malomed B A 2010 Phys. Rev. A 82 023621 [18] Li H and Wang D N 2009 Chin. Phys. B 18 4726 [19] Adhikari S K 2014 Phys. Rev. A 89 043615 [20] Halperin E J and Bohn J L 2020 Phys. Rev. Res. 2 043256 [21] Jia R Y, Fang P P, Gao C and Lin J 2021 Acta Phys. Sin. 70 180303 (in Chinese) [22] Gamayun O, Bezvershenko Y V and Cheianov V 2015 Phys. Rev. A 91 031605 [23] Chomaz L, Corman L, Bienaimé T, Desbuquois R, Weitenberg C, Nascimbene S, Beugnon J and Dalibard J 2015 Nat. Commun. 6 6162 [24] Hueck K, Luick N, Sobirey L, Siegl J, Lompe T and Moritz H 2018 Phys. Rev. Lett. 120 060402 [25] Navon N, Smith R P and Hadzibabic Z 2021 Nat. Phys. 17 1334 [26] Bao W and Du Q 2004 SIAM J. Sci. Comput. 25 1674 [27] Su X Q, Xu Z J and Zhao Y Q 2023 Chin. Phys. B 32 020506 [28] Mukherjee K, Mistakidis S I, Kevrekidis P G and Schmelcher P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 055302 [29] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [30] Wouters M, Tempere J and Devreese J T 2003 Phys. Rev. A 68 053603 [31] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551 [32] Zhang W and Zhang P 2011 Phys. Rev. A 83 053615 [33] Bao W and Wang H 2006 J. Comput. Phys. 217 612 [34] Zheng L, Zhang Y C and Liu C F 2019 Chin. Phys. B 28 116701 [35] Becker C, Sengstock K, Schmelcher P, Kevrekidis P G and Carretero-González R 2013 New J. Phys. 15 113028 [36] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett. 113 065302 [37] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X 13 031029 [38] Toikka L A and Suominen K A 2013 Phys. Rev. A 87 043601 [39] Wang W, Kolokolnikov T, Frantzeskakis D J, Carretero-González R and Kevrekidis P G 2021 Phys. Rev. A 104 023314 [40] Hu X H, Zhang X F, Zhao D, Luo H G and Liu W M 2009 Phys. Rev. A 79 023619 [41] Saint-Jalm R, Castilho P C M, Le Cerf E, Bakkali-Hassani B, Ville J L, Nascimbene S, Beugnon J and Dalibard J 2019 Phys. Rev. X 9 021035 [42] Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett. 125 253002 [43] Shi Z Y, Gao C and Zhai H 2021 Phys. Rev. X 11 041031 [44] Eigen C, Glidden J A P, Lopes R, Cornell E A, Smith R P and Hadzibabic Z 2018 Nature 563 221 [45] Gao C, Sun M, Zhang P and Zhai H 2020 Phys. Rev. Lett. 124 040403 [46] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83 [47] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147 [48] Baǧci M 2022 Phys. Rev. A 105 043524 [49] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489 [50] Sun F X, Niu Z X, Gong Q H, He Q Y and Zhang W 2019 Phys. Rev. B 100 014517 [51] Du R, Xing J C, Xiong B, Zheng J H and Yang T 2022 Chin. Phys. Lett. 39 070304 [52] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X 13 031029 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|