Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞)1 and Chao Gao(高超)1,2,†
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China; 2 Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
Abstract Manipulating nonlinear excitations, including solitons and vortices, is an essential topic in quantum many-body physics. A new progress in this direction is a protocol proposed in [Phys. Rev. Res.2 043256 (2020)] to produce dark solitons in a one-dimensional atomic Bose-Einstein condensate (BEC) by quenching inter-atomic interaction. Motivated by this work, we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics. For an isotropic disk trap with a hard-wall boundary, we find that successive inward-moving ring dark solitons (RDSs) can be induced from the edge, and the number of RDSs can be controlled by tuning the ratio of the after- and before-quench interaction strength across different critical values. The role of the quench played on the profiles of the density, phase, and sound velocity is also investigated. Due to the snake instability, the RDSs then become vortex-antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction. By tuning the geometry of the box traps, demonstrated as polygonal ones, more subtle dynamics of solitons and vortices are enabled. Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
(Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LQ22A040006, LY21A040004, LR22A040001, and LZ21A040001) and the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074342).
Zhen-Xia Niu(牛真霞) and Chao Gao(高超) Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate 2024 Chin. Phys. B 33 020314
[1] Kengne E, Liu W M and Malomed B A 2021 Phys. Rep.899 1 [2] Zhai H 2021 Ultracold Atomic Physics (Cambridge: Cambridge University Press) [3] Adamatzky A 2016 Advances in unconventional computing (Berlin: Springer) [4] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science293 663 [5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science287 97 [6] Fritsch A R, Lu M, Reid G H, Piñeiro A M and Spielman I B 2020 Phys. Rev. A101 053629 [7] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett.101 130401 [8] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett.83 2498 [9] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett.84 806 [10] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science292 476 [11] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature462 628 [12] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett.105 160403 [13] Zakharov E and Rubenchik A M 1974 Sov. Phys. JETP38 494 [14] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett.113 065302 [15] Kivshar Y S and Pelinovsky D E 2000 Phys. Rep.331 117 [16] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Kivshar Y S 2003 Phys. Rev. Lett.90 120403 [17] Ma M, Carretero-González R, Kevrekidis P G, Frantzeskakis D J and Malomed B A 2010 Phys. Rev. A82 023621 [18] Li H and Wang D N 2009 Chin. Phys. B18 4726 [19] Adhikari S K 2014 Phys. Rev. A89 043615 [20] Halperin E J and Bohn J L 2020 Phys. Rev. Res.2 043256 [21] Jia R Y, Fang P P, Gao C and Lin J 2021 Acta Phys. Sin.70 180303 (in Chinese) [22] Gamayun O, Bezvershenko Y V and Cheianov V 2015 Phys. Rev. A91 031605 [23] Chomaz L, Corman L, Bienaimé T, Desbuquois R, Weitenberg C, Nascimbene S, Beugnon J and Dalibard J 2015 Nat. Commun.6 6162 [24] Hueck K, Luick N, Sobirey L, Siegl J, Lompe T and Moritz H 2018 Phys. Rev. Lett.120 060402 [25] Navon N, Smith R P and Hadzibabic Z 2021 Nat. Phys.17 1334 [26] Bao W and Du Q 2004 SIAM J. Sci. Comput.25 1674 [27] Su X Q, Xu Z J and Zhao Y Q 2023 Chin. Phys. B32 020506 [28] Mukherjee K, Mistakidis S I, Kevrekidis P G and Schmelcher P 2020 J. Phys. B: At. Mol. Opt. Phys.53 055302 [29] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys.82 1225 [30] Wouters M, Tempere J and Devreese J T 2003 Phys. Rev. A68 053603 [31] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett.84 2551 [32] Zhang W and Zhang P 2011 Phys. Rev. A83 053615 [33] Bao W and Wang H 2006 J. Comput. Phys.217 612 [34] Zheng L, Zhang Y C and Liu C F 2019 Chin. Phys. B28 116701 [35] Becker C, Sengstock K, Schmelcher P, Kevrekidis P G and Carretero-González R 2013 New J. Phys.15 113028 [36] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett.113 065302 [37] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X13 031029 [38] Toikka L A and Suominen K A 2013 Phys. Rev. A87 043601 [39] Wang W, Kolokolnikov T, Frantzeskakis D J, Carretero-González R and Kevrekidis P G 2021 Phys. Rev. A104 023314 [40] Hu X H, Zhang X F, Zhao D, Luo H G and Liu W M 2009 Phys. Rev. A79 023619 [41] Saint-Jalm R, Castilho P C M, Le Cerf E, Bakkali-Hassani B, Ville J L, Nascimbene S, Beugnon J and Dalibard J 2019 Phys. Rev. X9 021035 [42] Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett.125 253002 [43] Shi Z Y, Gao C and Zhai H 2021 Phys. Rev. X11 041031 [44] Eigen C, Glidden J A P, Lopes R, Cornell E A, Smith R P and Hadzibabic Z 2018 Nature563 221 [45] Gao C, Sun M, Zhang P and Zhai H 2020 Phys. Rev. Lett.124 040403 [46] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature471 83 [47] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature422 147 [48] Baǧci M 2022 Phys. Rev. A105 043524 [49] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys.82 1489 [50] Sun F X, Niu Z X, Gong Q H, He Q Y and Zhang W 2019 Phys. Rev. B100 014517 [51] Du R, Xing J C, Xiong B, Zheng J H and Yang T 2022 Chin. Phys. Lett.39 070304 [52] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X13 031029
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.