Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020314    DOI: 10.1088/1674-1056/ad1179
GENERAL Prev   Next  

Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate

Zhen-Xia Niu(牛真霞)1 and Chao Gao(高超)1,2,†
1 Department of Physics, Zhejiang Normal University, Jinhua 321004, China;
2 Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
Abstract  Manipulating nonlinear excitations, including solitons and vortices, is an essential topic in quantum many-body physics. A new progress in this direction is a protocol proposed in [Phys. Rev. Res. 2 043256 (2020)] to produce dark solitons in a one-dimensional atomic Bose-Einstein condensate (BEC) by quenching inter-atomic interaction. Motivated by this work, we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics. For an isotropic disk trap with a hard-wall boundary, we find that successive inward-moving ring dark solitons (RDSs) can be induced from the edge, and the number of RDSs can be controlled by tuning the ratio of the after- and before-quench interaction strength across different critical values. The role of the quench played on the profiles of the density, phase, and sound velocity is also investigated. Due to the snake instability, the RDSs then become vortex-antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction. By tuning the geometry of the box traps, demonstrated as polygonal ones, more subtle dynamics of solitons and vortices are enabled. Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
Keywords:  Bose-Einstein condensate      quench interaction      soliton      vortex  
Received:  03 October 2023      Revised:  20 November 2023      Accepted manuscript online:  01 December 2023
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  47.35.Fg (Solitary waves)  
  47.32.C- (Vortex dynamics)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LQ22A040006, LY21A040004, LR22A040001, and LZ21A040001) and the National Natural Science Foundation of China (Grant Nos. 11835011 and 12074342).
Corresponding Authors:  Chao Gao     E-mail:  gaochao@zjnu.edu.cn

Cite this article: 

Zhen-Xia Niu(牛真霞) and Chao Gao(高超) Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate 2024 Chin. Phys. B 33 020314

[1] Kengne E, Liu W M and Malomed B A 2021 Phys. Rep. 899 1
[2] Zhai H 2021 Ultracold Atomic Physics (Cambridge: Cambridge University Press)
[3] Adamatzky A 2016 Advances in unconventional computing (Berlin: Springer)
[4] Dutton Z, Budde M, Slowe C and Hau L V 2001 Science 293 663
[5] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[6] Fritsch A R, Lu M, Reid G H, Piñeiro A M and Spielman I B 2020 Phys. Rev. A 101 053629
[7] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett. 101 130401
[8] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[9] Madison K W, Chevy F, Wohlleben W and Dalibard J 2000 Phys. Rev. Lett. 84 806
[10] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292 476
[11] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[12] Wang C, Gao C, Jian C M and Zhai H 2010 Phys. Rev. Lett. 105 160403
[13] Zakharov E and Rubenchik A M 1974 Sov. Phys. JETP 38 494
[14] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett. 113 065302
[15] Kivshar Y S and Pelinovsky D E 2000 Phys. Rep. 331 117
[16] Theocharis G, Frantzeskakis D J, Kevrekidis P G, Malomed B A and Kivshar Y S 2003 Phys. Rev. Lett. 90 120403
[17] Ma M, Carretero-González R, Kevrekidis P G, Frantzeskakis D J and Malomed B A 2010 Phys. Rev. A 82 023621
[18] Li H and Wang D N 2009 Chin. Phys. B 18 4726
[19] Adhikari S K 2014 Phys. Rev. A 89 043615
[20] Halperin E J and Bohn J L 2020 Phys. Rev. Res. 2 043256
[21] Jia R Y, Fang P P, Gao C and Lin J 2021 Acta Phys. Sin. 70 180303 (in Chinese)
[22] Gamayun O, Bezvershenko Y V and Cheianov V 2015 Phys. Rev. A 91 031605
[23] Chomaz L, Corman L, Bienaimé T, Desbuquois R, Weitenberg C, Nascimbene S, Beugnon J and Dalibard J 2015 Nat. Commun. 6 6162
[24] Hueck K, Luick N, Sobirey L, Siegl J, Lompe T and Moritz H 2018 Phys. Rev. Lett. 120 060402
[25] Navon N, Smith R P and Hadzibabic Z 2021 Nat. Phys. 17 1334
[26] Bao W and Du Q 2004 SIAM J. Sci. Comput. 25 1674
[27] Su X Q, Xu Z J and Zhao Y Q 2023 Chin. Phys. B 32 020506
[28] Mukherjee K, Mistakidis S I, Kevrekidis P G and Schmelcher P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 055302
[29] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[30] Wouters M, Tempere J and Devreese J T 2003 Phys. Rev. A 68 053603
[31] Petrov D S, Holzmann M and Shlyapnikov G V 2000 Phys. Rev. Lett. 84 2551
[32] Zhang W and Zhang P 2011 Phys. Rev. A 83 053615
[33] Bao W and Wang H 2006 J. Comput. Phys. 217 612
[34] Zheng L, Zhang Y C and Liu C F 2019 Chin. Phys. B 28 116701
[35] Becker C, Sengstock K, Schmelcher P, Kevrekidis P G and Carretero-González R 2013 New J. Phys. 15 113028
[36] Donadello S, Serafini S, Tylutki M, Pitaevskii L P, Dalfovo F, Lamporesi G and Ferrari G 2014 Phys. Rev. Lett. 113 065302
[37] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X 13 031029
[38] Toikka L A and Suominen K A 2013 Phys. Rev. A 87 043601
[39] Wang W, Kolokolnikov T, Frantzeskakis D J, Carretero-González R and Kevrekidis P G 2021 Phys. Rev. A 104 023314
[40] Hu X H, Zhang X F, Zhao D, Luo H G and Liu W M 2009 Phys. Rev. A 79 023619
[41] Saint-Jalm R, Castilho P C M, Le Cerf E, Bakkali-Hassani B, Ville J L, Nascimbene S, Beugnon J and Dalibard J 2019 Phys. Rev. X 9 021035
[42] Lv C, Zhang R and Zhou Q 2020 Phys. Rev. Lett. 125 253002
[43] Shi Z Y, Gao C and Zhai H 2021 Phys. Rev. X 11 041031
[44] Eigen C, Glidden J A P, Lopes R, Cornell E A, Smith R P and Hadzibabic Z 2018 Nature 563 221
[45] Gao C, Sun M, Zhang P and Zhai H 2020 Phys. Rev. Lett. 124 040403
[46] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[47] Fleischer J W, Segev M, Efremidis N K and Christodoulides D N 2003 Nature 422 147
[48] Baǧci M 2022 Phys. Rev. A 105 043524
[49] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[50] Sun F X, Niu Z X, Gong Q H, He Q Y and Zhang W 2019 Phys. Rev. B 100 014517
[51] Du R, Xing J C, Xiong B, Zheng J H and Yang T 2022 Chin. Phys. Lett. 39 070304
[52] Tamura H, Chen C A and Hung C L 2023 Phys. Rev. X 13 031029
[1] Coherence of nonlinear Bloch dynamics of Bose-Einstein condensates in deep optical lattices
Ai-Xia Zhang(张爱霞), Wei Zhang(张薇), Jie Wang(王杰), Xiao-Wen Hu(胡潇文), Lai-Lai Mi(米来来), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2024, 33(4): 040305.
[2] Diffraction deep neural network-based classification for vector vortex beams
Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034205.
[3] On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平). Chin. Phys. B, 2024, 33(3): 034210.
[4] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[5] Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space
Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2024, 33(2): 020603.
[6] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[7] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[8] Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(1): 014209.
[9] Electron vortices generation of photoelectron of H2+ by counter-rotating circularly polarized attosecond pulses
Haojing Yang(杨浩婧), Xiaoyu Liu(刘晓煜), Fengzheng Zhu(朱风筝), Liguang Jiao(焦利光), and Aihua Liu(刘爱华). Chin. Phys. B, 2024, 33(1): 013303.
[10] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[11] Young's double slit interference with vortex source
Qilin Duan(段琦琳), Pengfei Zhao(赵鹏飞), Yuhang Yin(殷玉杭), and Huanyang Chen(陈焕阳). Chin. Phys. B, 2024, 33(1): 014202.
[12] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[13] Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient
Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2023, 32(7): 070201.
[14] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[15] Influence of the initial parameters on soliton interaction in nonlinear optical systems
Xinyi Zhang(张昕仪) and Ye Wu(吴晔). Chin. Phys. B, 2023, 32(7): 070505.
No Suggested Reading articles found!