Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070505    DOI: 10.1088/1674-1056/ace1da
GENERAL Prev   Next  

Influence of the initial parameters on soliton interaction in nonlinear optical systems

Xinyi Zhang(张昕仪)1 and Ye Wu(吴晔)2,†
1 School of Statistics, Beijing Normal University, Beijing 100875, China;
2 School of Journalism and Communication, Beijing Normal University, Beijing 100875, China
Abstract  In nonlinear optical systems, optical solitons have the transmission properties of reducing error rate, improving system security and stability, and have important research significance in future research on all optical communication. This paper uses the bilinear method to obtain the two-soliton solutions of the nonlinear Schrödinger equation. By analyzing the relevant physical parameters in the obtained solutions, the interaction between optical solitons is optimized. The influence of the initial conditions on the interactions of the optical solitons is analyzed in detail, the reason why the interaction of the optical solitons is sensitive to the initial condition is discussed, and the interactions of the optical solitons are effectively weakened. The relevant results are beneficial for reducing the error rate and promoting the communication quality of the system.
Keywords:  optical solitons, nonlinear Schrö      dinger equation, soliton interactions  
Received:  06 June 2023      Revised:  22 June 2023      Accepted manuscript online:  27 June 2023
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875005).
Corresponding Authors:  Ye Wu     E-mail:  wuye@bnu.edu.cn

Cite this article: 

Xinyi Zhang(张昕仪) and Ye Wu(吴晔) Influence of the initial parameters on soliton interaction in nonlinear optical systems 2023 Chin. Phys. B 32 070505

[1] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[2] Zhou Q, Zhong Y, Triki H, et al. 2022 Chin. Phys. Lett. 39 044202
[3] Govinden V, Prokhorenko S, Zhang Q, et al. 2023 Nat. Mater. 22 553
[4] Wu X Q, Zhang Y, Peng J S, et al. 2022 Nat. Commun. 13 5784
[5] Wu X Q, Peng J S, Boscolo S, et al. 2021 Laser Photon. Rev. 16 2100191
[6] Peng J S, Boscolo S, Zhao Z H, et al. 2019 Sci. Adv. 5 eaax1110
[7] Wang Y, Zhou S J, Deng Y H and Chen Q 2023 Chin. Phys. B 32 054203
[8] Zhang X M, Qin Y H, Ling L M and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[9] Wang T Y, Zhou Q and Liu W J 2022 Chin. Phys. B 31 020501
[10] Anderson M H, Tikan A, Tusnin A, et al. 2023 Phys. Rev. X 13 011040
[11] Dakova-Mollova A, Miteva P, Dakova D, et al. 2023 Optik 279 170770
[12] Taylor J R 2023 Opt. Commun. 536 129382
[13] Rehman S U and Ahmad J 2023 Phys. Scripta 98 035216
[14] Yue Y Z, Li J, Zhang Z Q, et al. 2023 Opt. Commun. 529 129082
[15] Soltani M, Triki H, Azzouzi F, et al. 2023 Chaos Soliton. Fract. 169 113212
[16] Hu X, Guo J, Wang J, et al. 2023 Light Sci. Appl. 12 38
[17] Fu L, Li J J, Yang H W, et al. 2023 Front. Phys. 11 1108505
[18] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[19] Wang S B, Ma G L, Zhang X, et al. 2022 Chin. Phys. Lett. 39 114202
[20] Zhou, Q, Huang Z H, Sun Y Z, et al. 2023 Nonlinear Dyn. 111 5757
[21] Bezerra L J R, Morais D, Buarque A R C, et al. 2023 Nonlinear Dyn. 111 6629
[22] Zhang X F, Xu T, Li M and Meng Y 2023 Chin. Phys. B 32 010505
[23] Mou D S and Dai C Q 2022 Appl. Math. Lett. 133 108230
[24] Ghosh N, Das A and Nath D 2023 Nonlinear Dyn. 111 1589
[25] Geng K L, Mou D S and Dai C Q 2023 Nonlinear Dyn. 111 603
[26] Wang S B, Zhang X, Ma G L and Zhu D Y 2023 Chin. Phys. B 32 030506
[27] Bo W B, Wang R R, Liu W and Wang Y Y 2022 Chaos 32 093104
[28] Seadawy A R, Rizvi S T, Sohail M and Ali K 2022 Chaos Soliton.s Fract. 163 112558
[29] Wei B and Liang J 2022 Nonlinear Dyn. 109 2969
[30] Zhou Q, Xu M Y, Sun Y Z, et al. 2022 Nonlinear Dyn. 110 1747
[31] Zhao X H and Li S X 2022 Appl. Math. Lett. 132 108159
[32] Paredes A, Salgueiro J R and Michinel H 2022 Physica D 437 133340
[33] Liu X Y, Triki H, Zhou Q, et al. 2018 Nonlinear Dyn. 94 703
[1] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[2] Breather and its interaction with rogue wave of the coupled modified nonlinear Schrödinger equation
Ming Wang(王明), Tao Xu(徐涛), Guoliang He(何国亮), and Yu Tian(田雨). Chin. Phys. B, 2023, 32(5): 050503.
[3] Resonant interactions among two-dimensional nonlinear localized waves and lump molecules for the (2+1)-dimensional elliptic Toda equation
Fuzhong Pang(庞福忠), Hasi Gegen(葛根哈斯), and Xuemei Zhao(赵雪梅). Chin. Phys. B, 2023, 32(5): 050205.
[4] Dynamics of lump chains for the BKP equation describing propagation of nonlinear waves
Zhonglong Zhao(赵忠龙), Lingchao He(和玲超), and Abdul-Majid Wazwaz. Chin. Phys. B, 2023, 32(4): 040501.
[5] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[6] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[7] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[8] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[9] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[10] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[11] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[12] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[13] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[14] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[15] Fusionable and fissionable waves of (2+1)-dimensional shallow water wave equation
Jing Wang(王静), Xue-Li Ding(丁学利), and Biao Li(李彪). Chin. Phys. B, 2022, 31(10): 100502.
No Suggested Reading articles found!