Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 070201    DOI: 10.1088/1674-1056/acb9f2
GENERAL   Next  

Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient

Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏)
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
Abstract  This article investigates the Hirota-Satsuma-Ito equation with variable coefficient using the Hirota bilinear method and the long wave limit method. The equation is proved to be Painlevé integrable by Painlevé analysis. On the basis of the bilinear form, the forms of two-soliton solutions, three-soliton solutions, and four-soliton solutions are studied specifically. The appropriate parameter values are chosen and the corresponding figures are presented. The breather waves solutions, lump solutions, periodic solutions and the interaction of breather waves solutions and soliton solutions, etc. are given. In addition, we also analyze the different effects of the parameters on the figures. The figures of the same set of parameters in different planes are presented to describe the dynamical behavior of solutions. These are important for describing water waves in nature.
Keywords:  (2+1)-dimensional variable coefficient Hirota-Satsuma-Ito equation      Hirota bilinear method      long wave limit method      N-soliton solutions  
Received:  08 December 2022      Revised:  06 February 2023      Accepted manuscript online:  08 February 2023
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
  04.20.Jb (Exact solutions)  
  02.30.Tb (Operator theory)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11505090), Research Award Foundation for Outstanding Young Scientists of Shandong Province (Grant No. BS2015SF009), the Doctoral Foundation of Liaocheng University (Grant No. 318051413), Liaocheng University Level Science and Technology Research Fund (Grant No. 318012018), and Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology (Grant No. 319462208).
Corresponding Authors:  Xiangpeng Xin     E-mail:  xinxiangpeng@lcu.edu.cn

Cite this article: 

Xinying Yan(闫鑫颖), Jinzhou Liu(刘锦洲), and Xiangpeng Xin(辛祥鹏) Interaction solutions and localized waves to the (2+1)-dimensional Hirota-Satsuma-Ito equation with variable coefficient 2023 Chin. Phys. B 32 070201

[1] Xin X P, Liu Y T, Xia Y R and Liu H Z 2021 Appl. Math. Lett. 119 107209
[2] Yang D Y, Tian B, Qu Q X, Chen R Z and Chen S S 2021 Chaos Solitons Fractals 150 110487
[3] Chen S J, Ma W X and Lü X 2020 Commun. Nonlinear. Sci. 83 105135
[4] Gao L N, Zi Y Y, Yin Y H, Ma W X and Lü X 2017 Nonlinear Dyn. 89 2233
[5] Liu P, Cheng J, Ren B and Yang J R 2020 Chin. Phys. B 29 020201
[6] Kumar S, Kumar D and Kumar A 2021 Chaos Solitons Fractals 142 110507
[7] Sadat R, Saleh R, Kassem M and Mousa M M 2020 Chaos Solitons Fractals 140 110134
[8] Ren R C and Zhang S L 2020 Comput. Appl. Math. 39 250
[9] Wu J W, He J T and Lin J 2022 Eur. Phys. J. Plus 137 1
[10] Ma W X 2021 Proc. Am. Math. Soc. 149 251
[11] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950
[12] Ma W X and Zhou Y 2018 J. Differ. Equ. 264 2633
[13] Yin Y H, Chen S J and Lü X 2020 Chin. Phys. B 29 120502
[14] Wang H F and Zhang Y F 2020 Chin. Phys. B 29 040501
[15] Shang Y D 2008 Chaos Solitons Fractals 36 762
[16] Lü X and Chen S J 2021 Nonlinear Dyn. 103 947
[17] Fang T and Wang Y H 2018 Comput. Math. Appl. 76 1476
[18] Wang H, Tian S F, Zhang T T, Chen Y and Fang Y 2019 Comput. Appl. Math. 38 164
[19] Pu J C, Li J and Chen Y 2021 Chin. Phys. B 30 060202
[20] Zhao X H 2021 Appl. Math. Lett. 121 107383
[21] Ma Y L, Wazwaz A M and Li B Q 2021 Nonlinear Dyn. 104 1581
[22] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[23] Liu J G and Zhu W H 2021 Nonlinear Dyn. 103 1841
[24] Chen Q Q, Qi Z Q, Chen J C and Li B 2021 Results Phys. 27 104480
[25] Yuan P S, Qi J X, Li Z L and An L H 2021 Chin. Phys. B 30 040503
[26] Ma W X 2019 Front. Math. China 14 619
[27] Liu Y Q, Wen X Y and Wang D S 2019 Comput. Math. Appl. 77 947
[28] Kumar S, Nisar K S and Kumar A 2021 Results Phys. 28 104621
[29] Zhou T Y, Tian B, Chen Y Q and Shen Y 2022 Nonlinear Dyn. 108 2417
[30] Wu J W, Cai Y J and Lin J 2022 Chin. Phys. B 31 030201
[31] Wazwaz A M 2020 Waves Random Complex Media 30 776
[32] Huang L L, Yue Y F and Chen Y 2018 Comput. Math. Appl. 76 831
[33] Zhang S J and Bao T 2021 Nonlinear Dyn. 106 2465
[1] Soliton propagation for a coupled Schrödinger equation describing Rossby waves
Li-Yang Xu(徐丽阳), Xiao-Jun Yin(尹晓军), Na Cao(曹娜) and Shu-Ting Bai(白淑婷). Chin. Phys. B, 2023, 32(7): 070202.
[2] Interaction solutions for the second extended (3+1)-dimensional Jimbo-Miwa equation
Hongcai Ma(马红彩), Xue Mao(毛雪), and Aiping Deng(邓爱平). Chin. Phys. B, 2023, 32(6): 060201.
[3] Superposition formulas of multi-solution to a reduced (3+1)-dimensional nonlinear evolution equation
Hangbing Shao(邵杭兵) and Bilige Sudao(苏道毕力格). Chin. Phys. B, 2023, 32(5): 050204.
[4] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[5] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[6] General M-lumps, T-breathers, and hybrid solutions to (2+1)-dimensional generalized KDKK equation
Peisen Yuan(袁培森), Jiaxin Qi(齐家馨), Ziliang Li(李子良), and Hongli An(安红利). Chin. Phys. B, 2021, 30(4): 040503.
[7] High-order rational solutions and resonance solutions for a (3+1)-dimensional Kudryashov-Sinelshchikov equation
Yun-Fei Yue(岳云飞), Jin Lin(林机), and Yong Chen(陈勇). Chin. Phys. B, 2021, 30(1): 010202.
[8] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[9] Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system
Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军). Chin. Phys. B, 2020, 29(7): 070502.
[10] Localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations
Yu-Hang Yin(尹宇航), Si-Jia Chen(陈思佳), and Xing Lü(吕兴). Chin. Phys. B, 2020, 29(12): 120502.
[11] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
Feng Yuan(袁丰), Jing-Song He(贺劲松), Yi Cheng(程艺). Chin. Phys. B, 2019, 28(10): 100202.
[12] Superposition solitons in two-component Bose-Einstein condensates
Wang Xiao-Min (王晓敏), Li Qiu-Yan (李秋艳), Li Zai-Dong (李再东). Chin. Phys. B, 2013, 22(5): 050311.
[13] Periodic-soliton solutions of the (2+1)-dimensional Kadomtsev--Petviashvili equation
Zhaqilao(扎其劳) and Li Zhi-Bin(李志斌). Chin. Phys. B, 2008, 17(7): 2333-2338.
No Suggested Reading articles found!