ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates |
Huaping Zang(臧华平)1, Baozhen Wang(王宝珍)1, Chenglong Zheng(郑程龙)1, Lai Wei(魏来)2, Quanping Fan(范全平)2, Shaoyi Wang(王少义)2, Zuhua Yang(杨祖华)2,‡, Weimin Zhou(周维民)2, Leifeng Cao(曹磊峰)3, and Haizhong Guo(郭海中)1,† |
1 Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; 2 National Key Laboratory for Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 3 School of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci, which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates (ERZPs) and the advantage of spiral zone plates (SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates (ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate; therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices, ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.
|
Received: 19 April 2023
Revised: 28 May 2023
Accepted manuscript online: 14 June 2023
|
PACS:
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
42.25.Fx
|
(Diffraction and scattering)
|
|
07.85.Fv
|
(X- and γ-ray sources, mirrors, gratings, and detectors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174350, 12275253, and 12275250), the Program of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (Grant No. 6142A04200107), and the National Natural Science Foundation, Youth Fund (Grant No. 12105268). |
Corresponding Authors:
Haizhong Guo, Zuhua Yang
E-mail: hguo@zzu.edu.cn;yangzuhua@caep.cn
|
Cite this article:
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中) Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates 2024 Chin. Phys. B 33 014209
|
[1] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light Sci. Appl. 8 2095 [2] Xia M, Yin Y L, Pei C Y, Ye Y E, Gu R X, Yan K, Wu D, Xia Y and Yin J P 2021 Chin. Phys. B 30 114202 [3] Genevieve G, Jonathan L, Kyung T K, Hammond T J, Frumker E, Boyd R W and Corkum P B 2014 Phys. Rev. Lett. 113 153901 [4] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M and Hernandez G C 2019 Science 364 1253 [5] Wang Z, Liu W Z, Zhao M X, Wang J J, Zhang Y W, Chen A, Guan F, Liu X H, Shi L and Zi J 2020 Nat. Photon. 14 623 [6] Zhi S T, Zhang H J and Zhang D X 2012 Acta Phys. Sin. 61 024207 (in Chinese) [7] Nishiguchi D, Aranson I S, Snezhko A and Sokolov A 2018 Nat. Commun. 9 4486 [8] Pascucci M, Ganesan S, Tripathi A, Katz O, Emiliani V and Guillon M 2019 Nat. Commun. 10 1327 [9] Jesacher A, Fürhapter S, Bernet S and Ritsch-Marte M 2005 Phys. Rev. Lett. 94 233902 [10] Dong M, Zhao C L, Cai Y J and Yang Y J 2021 Sci. China-Phys. Mech. Astron. 64 224201 [11] Bliokh K Y 2021 Phys. Rev. Lett. 126 243601 [12] Dong, L W, Ye F W, Wang J D and Li Y P 2004 Acta Phys. Sin. 53 3353 (in Chinese) [13] Zhao Z C, Yang X F, Xu T X, He J R, Gong Q X, Du Y L, Dong L, Yuan B and Ma F Y 2018 Acta Phys. Sin. 67 014203 (in Chinese) [14] Zheng C L, Su S L, Zang H P, Ji Z W, Tian Y Z, Chen S, Mu K J, Wei L, Fan Q P, Wang C K, Zhu X L, Xie C Q, Cao L F and Liang E J 2018 Appl. Opt. 57 802 [15] Chen J, Kuang D F and Fang Z L 2009 Chin. Phys. Lett. 26 094210 [16] Liu Z W, Yan S, Liu H G and Chen X F 2019 Phys. Rev. Lett. 123 183902 [17] Zang H P, Zheng C L, Fan Q P, Wang C K, Wei L, Cao L F, Wang X G and Liang E J 2018 Chin. Opt. Lett. 16 080501 [18] Liu Y J, Dai H T, Sun X W and Huang T J 2019 Opt. Exp. 17 12418 [19] Sakdinawat A and Attwood D 2010 Nat. Photon. 4 840 [20] Fabrizio E D, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J and Barrett R 1999 Nature 401 895 [21] Zhang Y X, Rykovanov S, Shi M Y, Zhong C L, He X T, Qiao B and Zepf M 2020 Phys. Rev. Lett. 124 114802 [22] Ouyang X, Xu Y, Xian M C, Feng Z W, Zhu L W, Cao Y Y, Lan S, Guan B O, Qiu C W, Gu M and Li X P 2021 Nat. Photon. 15 901 [23] Gaudin J, Rehbein S, Guttmann P, Godé S, Schneider G, Wernet P and Eberhardt W 2008 J. Appl. Phys. 104 033112 [24] Zürch M, Kern C, Hansinger P, Dreischuh A and Spielmann C 2012 Nat. Phys. 8 743 [25] Turpin A, Rego A, Picón A, Román J S and García C H 2017 Sci. Rep. 7 43888 [26] Dorney K M, Rego L, Brooks N J, Román J S, Liao C T, Ellis J L, Zusin D, Gentry C, Nguyen Q L, Shaw J M, Picón A, Plaja L, Kapteyn H C, Murnane M M and García C H 2019 Nat. Photon. 13 123 [27] Wei L, Gao Y L, Wen X L, Zhao Z Q, Cao L F and Gu Y Q 2013 J. Opt. Soc. Am. A 30 233 [28] Schneider G 1997 Appl. Phys. Lett. 71 2242 [29] Michette A G, Pfauntsch S J, Erko A, Firsov A and Svintsov A 2005 Opt. Commun. 245 249 [30] Yang Z H, Zhao Z Q, Wei L, Zhang Q Q, Qian F, Gu Y Q and Lei L F 2014 Chin. Phys. Lett. 31 050701 [31] Xie C Q, Zhu X L, Shi L N and Liu M 2010 Opt. Lett. 35 1765 [32] Fan Q P, Wang S Y, Yang Z H, Wei L, Hu F, Zang H P, Zhang Q Q, Wang C K, Jiang G and Cao L F 2017 J. Modern Opt. 64 244 [33] Gao N, Xie C Q, Li C, Jin C S and Liu M 2011 Appl. Phys. Lett. 98 151106 [34] Ghadimi Nassiri M and Brasselet E 2018 Phys. Rev. Lett. 121 213901 [35] Xie C Q, Zhu X L, Li H L, Shi L N, Hua Y L and Liu M 2012 Opt. Lett. 37 749 [36] Zang H P, Zheng C L, Ji Z W, Fan Q P, Wei L, Li Y J, Mu K J, Chen S, WangC K, Zhu X L, Xie C Q, Cao L F, Liang E J 2019 Chin. Phys. B 28 064201 [37] Xie C Q, Zhu X L, Li H L, Shi L N and Wang Y H 2010 Opt. Lett. 35 4048 [38] Shu J H, Chen Z Y, Pu J X and Liu Y X 2011 Chin. Phys. B 20 114202 [39] Zang H P, Wang C K, Gao Y L, Zhou W M, Kuang L Y, Wei L, Fan W, Zhang W H, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H, Jiang G, Zhu X L, Xie C Q, Zhao Y D and Cui M Q 2012 Appl. Phys. Lett. 100 111904 [40] Wei L, Kuang L Y, Fan W, Zang H P, Cao L F, Gu Y Y and Wang X F 2011 Opt. Exp. 19 21419 [41] Suzuki Y S, Takeuchi A, Takano H, Kentaro U, Toshihiko Q and Katsuaki I 2004 Rev. Sci. Instrum. 75 1155 [42] Chen Y, Wei L, Zhang Q Q, Fan Q P, Yang Z H and Cao L F 2020 Chin. Phys. B 29 104202 [43] Erko A, Firsov A and Senf F 2012 SpectroChim. Acta Part. B:At. Spectrosc. 67 57 [44] Zang H P, Miao Z L, Wang M G, Fan Q P, Wei L, Wang C K, Zhou W M, Hua Y L, Cao L F, Xue X L and Guo H Z 2022 Sci. China-Phys. Mech. Astron. 65 294212 [45] Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206 [46] Patchkovskii S and Spanner M 2012 Nat. Phys. 8 707 [47] Zhang Y X, Yuan J H, Qu Y W, Zhou X, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P and Yu C X 2020 Chin. Phys. B 29 034208 [48] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, CalvoG F and Roso L 2010 New J. Phys. 12 083053 [49] Attwood D T 1999 Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications (Cambridge:Cambridge university Press) pp. 329-388 [50] Zhang H, Zeng J, Lu X Y, Wang Z Y, Zhao C L and Cai Y J 2022 Nanophotonics 11 241 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|