Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014209    DOI: 10.1088/1674-1056/acde4f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates

Huaping Zang(臧华平)1, Baozhen Wang(王宝珍)1, Chenglong Zheng(郑程龙)1, Lai Wei(魏来)2, Quanping Fan(范全平)2, Shaoyi Wang(王少义)2, Zuhua Yang(杨祖华)2,‡, Weimin Zhou(周维民)2, Leifeng Cao(曹磊峰)3, and Haizhong Guo(郭海中)1,†
1 Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China;
2 National Key Laboratory for Laser Fusion, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
3 School of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
Abstract  Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci, which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates (ERZPs) and the advantage of spiral zone plates (SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates (ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate; therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices, ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.
Keywords:  optical vortex      single-focus      spiral zone plate      topological charges  
Received:  19 April 2023      Revised:  28 May 2023      Accepted manuscript online:  14 June 2023
PACS:  42.79.Ci (Filters, zone plates, and polarizers)  
  42.25.Fx (Diffraction and scattering)  
  07.85.Fv (X- and γ-ray sources, mirrors, gratings, and detectors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174350, 12275253, and 12275250), the Program of Science and Technology on Plasma Physics Laboratory, China Academy of Engineering Physics (Grant No. 6142A04200107), and the National Natural Science Foundation, Youth Fund (Grant No. 12105268).
Corresponding Authors:  Haizhong Guo, Zuhua Yang     E-mail:  hguo@zzu.edu.cn;yangzuhua@caep.cn

Cite this article: 

Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中) Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates 2024 Chin. Phys. B 33 014209

[1] Shen Y J, Wang X J, Xie Z W, Min C J, Fu X, Liu Q, Gong M L and Yuan X C 2019 Light Sci. Appl. 8 2095
[2] Xia M, Yin Y L, Pei C Y, Ye Y E, Gu R X, Yan K, Wu D, Xia Y and Yin J P 2021 Chin. Phys. B 30 114202
[3] Genevieve G, Jonathan L, Kyung T K, Hammond T J, Frumker E, Boyd R W and Corkum P B 2014 Phys. Rev. Lett. 113 153901
[4] Rego L, Dorney K M, Brooks N J, Nguyen Q L, Liao C T, San R J, Couch D E, Liu A, Pisanty E, Lewenstein M, Plaja L, Kapteyn H C, Murnane M M and Hernandez G C 2019 Science 364 1253
[5] Wang Z, Liu W Z, Zhao M X, Wang J J, Zhang Y W, Chen A, Guan F, Liu X H, Shi L and Zi J 2020 Nat. Photon. 14 623
[6] Zhi S T, Zhang H J and Zhang D X 2012 Acta Phys. Sin. 61 024207 (in Chinese)
[7] Nishiguchi D, Aranson I S, Snezhko A and Sokolov A 2018 Nat. Commun. 9 4486
[8] Pascucci M, Ganesan S, Tripathi A, Katz O, Emiliani V and Guillon M 2019 Nat. Commun. 10 1327
[9] Jesacher A, Fürhapter S, Bernet S and Ritsch-Marte M 2005 Phys. Rev. Lett. 94 233902
[10] Dong M, Zhao C L, Cai Y J and Yang Y J 2021 Sci. China-Phys. Mech. Astron. 64 224201
[11] Bliokh K Y 2021 Phys. Rev. Lett. 126 243601
[12] Dong, L W, Ye F W, Wang J D and Li Y P 2004 Acta Phys. Sin. 53 3353 (in Chinese)
[13] Zhao Z C, Yang X F, Xu T X, He J R, Gong Q X, Du Y L, Dong L, Yuan B and Ma F Y 2018 Acta Phys. Sin. 67 014203 (in Chinese)
[14] Zheng C L, Su S L, Zang H P, Ji Z W, Tian Y Z, Chen S, Mu K J, Wei L, Fan Q P, Wang C K, Zhu X L, Xie C Q, Cao L F and Liang E J 2018 Appl. Opt. 57 802
[15] Chen J, Kuang D F and Fang Z L 2009 Chin. Phys. Lett. 26 094210
[16] Liu Z W, Yan S, Liu H G and Chen X F 2019 Phys. Rev. Lett. 123 183902
[17] Zang H P, Zheng C L, Fan Q P, Wang C K, Wei L, Cao L F, Wang X G and Liang E J 2018 Chin. Opt. Lett. 16 080501
[18] Liu Y J, Dai H T, Sun X W and Huang T J 2019 Opt. Exp. 17 12418
[19] Sakdinawat A and Attwood D 2010 Nat. Photon. 4 840
[20] Fabrizio E D, Romanato F, Gentili M, Cabrini S, Kaulich B, Susini J and Barrett R 1999 Nature 401 895
[21] Zhang Y X, Rykovanov S, Shi M Y, Zhong C L, He X T, Qiao B and Zepf M 2020 Phys. Rev. Lett. 124 114802
[22] Ouyang X, Xu Y, Xian M C, Feng Z W, Zhu L W, Cao Y Y, Lan S, Guan B O, Qiu C W, Gu M and Li X P 2021 Nat. Photon. 15 901
[23] Gaudin J, Rehbein S, Guttmann P, Godé S, Schneider G, Wernet P and Eberhardt W 2008 J. Appl. Phys. 104 033112
[24] Zürch M, Kern C, Hansinger P, Dreischuh A and Spielmann C 2012 Nat. Phys. 8 743
[25] Turpin A, Rego A, Picón A, Román J S and García C H 2017 Sci. Rep. 7 43888
[26] Dorney K M, Rego L, Brooks N J, Román J S, Liao C T, Ellis J L, Zusin D, Gentry C, Nguyen Q L, Shaw J M, Picón A, Plaja L, Kapteyn H C, Murnane M M and García C H 2019 Nat. Photon. 13 123
[27] Wei L, Gao Y L, Wen X L, Zhao Z Q, Cao L F and Gu Y Q 2013 J. Opt. Soc. Am. A 30 233
[28] Schneider G 1997 Appl. Phys. Lett. 71 2242
[29] Michette A G, Pfauntsch S J, Erko A, Firsov A and Svintsov A 2005 Opt. Commun. 245 249
[30] Yang Z H, Zhao Z Q, Wei L, Zhang Q Q, Qian F, Gu Y Q and Lei L F 2014 Chin. Phys. Lett. 31 050701
[31] Xie C Q, Zhu X L, Shi L N and Liu M 2010 Opt. Lett. 35 1765
[32] Fan Q P, Wang S Y, Yang Z H, Wei L, Hu F, Zang H P, Zhang Q Q, Wang C K, Jiang G and Cao L F 2017 J. Modern Opt. 64 244
[33] Gao N, Xie C Q, Li C, Jin C S and Liu M 2011 Appl. Phys. Lett. 98 151106
[34] Ghadimi Nassiri M and Brasselet E 2018 Phys. Rev. Lett. 121 213901
[35] Xie C Q, Zhu X L, Li H L, Shi L N, Hua Y L and Liu M 2012 Opt. Lett. 37 749
[36] Zang H P, Zheng C L, Ji Z W, Fan Q P, Wei L, Li Y J, Mu K J, Chen S, WangC K, Zhu X L, Xie C Q, Cao L F, Liang E J 2019 Chin. Phys. B 28 064201
[37] Xie C Q, Zhu X L, Li H L, Shi L N and Wang Y H 2010 Opt. Lett. 35 4048
[38] Shu J H, Chen Z Y, Pu J X and Liu Y X 2011 Chin. Phys. B 20 114202
[39] Zang H P, Wang C K, Gao Y L, Zhou W M, Kuang L Y, Wei L, Fan W, Zhang W H, Zhao Z Q, Cao L F, Gu Y Q, Zhang B H, Jiang G, Zhu X L, Xie C Q, Zhao Y D and Cui M Q 2012 Appl. Phys. Lett. 100 111904
[40] Wei L, Kuang L Y, Fan W, Zang H P, Cao L F, Gu Y Y and Wang X F 2011 Opt. Exp. 19 21419
[41] Suzuki Y S, Takeuchi A, Takano H, Kentaro U, Toshihiko Q and Katsuaki I 2004 Rev. Sci. Instrum. 75 1155
[42] Chen Y, Wei L, Zhang Q Q, Fan Q P, Yang Z H and Cao L F 2020 Chin. Phys. B 29 104202
[43] Erko A, Firsov A and Senf F 2012 SpectroChim. Acta Part. B:At. Spectrosc. 67 57
[44] Zang H P, Miao Z L, Wang M G, Fan Q P, Wei L, Wang C K, Zhou W M, Hua Y L, Cao L F, Xue X L and Guo H Z 2022 Sci. China-Phys. Mech. Astron. 65 294212
[45] Ran L L, Guo Z Y, Qu S L 2012 Chin. Phys. B 21 104206
[46] Patchkovskii S and Spanner M 2012 Nat. Phys. 8 707
[47] Zhang Y X, Yuan J H, Qu Y W, Zhou X, Yan B B, Wu Q, Wang K R, Sang X Z, Long K P and Yu C X 2020 Chin. Phys. B 29 034208
[48] Picón A, Benseny A, Mompart J, Vázquez de Aldana J R, Plaja L, CalvoG F and Roso L 2010 New J. Phys. 12 083053
[49] Attwood D T 1999 Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications (Cambridge:Cambridge university Press) pp. 329-388
[50] Zhang H, Zeng J, Lu X Y, Wang Z Y, Zhao C L and Cai Y J 2022 Nanophotonics 11 241
[1] Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum
Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺). Chin. Phys. B, 2023, 32(12): 124209.
[2] Three-Airy autofocusing beams
Xiao-Hong Zhang(张小红), Fei-Li Wang(王飞利), Lu-Yang Bai(白露阳), Ci-Bo Lou(楼慈波), Yi Liang(梁毅). Chin. Phys. B, 2020, 29(6): 064204.
[3] Characterization of focusing performance of spiral zone plates with fractal structure
Hua-Ping Zang(臧华平), Cheng-Long Zheng(郑程龙), Zi-Wen Ji(吉子雯), Quan-Ping Fan(范全平), Lai Wei(魏来), Yong-Jie Li(李永杰), Kai-Jun Mu(牧凯军), Shu Chen(陈述), Chuan-Ke Wang(王传珂), Xiao-Li Zhu(朱效力), Chang-Qing Xie(谢常青), Lei-Feng Cao(曹磊峰), Er-Jun Liang(梁二军). Chin. Phys. B, 2019, 28(6): 064201.
[4] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[5] High-order optical vortex harmonics generated by relativistic femtosecond laser pulse
Han Yu-Jing (韩玉晶), Liao Guo-Qian (廖国前), Chen Li-Ming (陈黎明), Li Yu-Tong (李玉同), Wang Wei-Min (王伟民), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(6): 065202.
[6] Interaction of two edge dislocations in free-space propagation
He De(何德), Gao Zeng-Hui(高曾辉), Yan Hong-Wei(闫红卫), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2011, 20(1): 014201.
[7] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
No Suggested Reading articles found!