Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034210    DOI: 10.1088/1674-1056/acfa87
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On the generation of high-quality Nyquist pulses in mode-locked fiber lasers

Yuxuan Ren(任俞宣)1,†, Jinman Ge(葛锦蔓)2,†, Xiaojun Li(李小军)2, Junsong Peng(彭俊松)1,‡, and Heping Zeng(曾和平)1,3,4
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 National Key Laboratory of Science and Technology on Space Microwave, China Aerospace Science and Technology, Xi'an 710100, China;
3 Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China;
4 Jinan Institute of Quantum Technology, Jinan 250101, China
Abstract  Nyquist pulses have wide applications in many areas, from electronics to optics. Mode-locked lasers are ideal platforms to generate such pulses. However, how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive. We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations. We find that net dispersion, linear loss, gain and filter shaping can affect the quality of Nyquist pulses significantly. We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium. Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
Keywords:  mode locking      laser      soliton      fiber      pulse  
Received:  12 July 2023      Revised:  04 September 2023      Accepted manuscript online:  18 September 2023
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11621404, 11561121003, 11727812, 61775059, 12074122, 62022033, and 11704123), Shanghai Rising-Star Program, the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave (Grant No. HTKT2022KL504008), Shanghai Natural Science Foundation (Grant No. 23ZR1419000), and the National Key Laboratory Foundation of China (Grant No. 6142411196307).
Corresponding Authors:  Junsong Peng     E-mail:  jspeng@lps.ecnu.edu.cn

Cite this article: 

Yuxuan Ren(任俞宣), Jinman Ge(葛锦蔓), Xiaojun Li(李小军), Junsong Peng(彭俊松), and Heping Zeng(曾和平) On the generation of high-quality Nyquist pulses in mode-locked fiber lasers 2024 Chin. Phys. B 33 034210

[1] Nyquist H 1928 Transactions of the American Institute of Electrical Engineers 47 617
[2] Yue L, Kong D, Li Y and Wu J 2019 IEEE Photon. J. 11 7203908
[3] Choi J, Kim J, Cho J H and Lehnert J S 2021 IEEE International Conference on Communications, 14-23 June, 2021, pp. 1-6
[4] Dien N V, Tuan N V, Mai L T P, Hieu N V, Phuoc V Q, Quynh N Q N and Hung N T 2022 Computer Networks 204 108697
[5] Bosco G, Carena A, Curri V, Poggiolini P and Forghieri F 2010 IEEE Photon. Technol. Lett. 22 1129
[6] Bosco G 2016 Enabling Technologies for High Spectral - Efficiency Coherent Optical Communication Networks pp. 123-156
[7] Alishahi F, Fallahpour A, Mohajerin-Ariaei A, Cao Y, Kordts A, Pfeiffer M H P, Karpov M, Almaiman A, Liao P, Zou K, Liu C, Willner A N, Tur M, Kippenberg T J and Willner A E 2019 Opt. Lett. 44 1852
[8] Misra A, Kress C, Singh K, Meier J, Schwabe T, Preussler S, Scheytt J C and Schneider T 2022 Opt. Express 30 13776
[9] Hirooka T, Ruan P, Guan P and Nakazawa M 2012 Opt. Express 20 15001
[10] Châelain B, Laperle C, Roberts K, Chagnon M, Xu X, Borowiec A, Gagnon F and Plant D V 2012 Opt. Express 20 8397
[11] Harako K, Seya D, Suzuki D, Hirooka T and Nakazawa M 2015 Opt. Express 23 30801
[12] Nakazawa M, Hirooka T, Ruan P and Guan P 2012 Opt. Express 20 1129
[13] Nakazawa M and Hirooka T 2021 IEEE J. Quantum Electron. 57 1300320
[14] Misra A, Singh K, Meier J, Kress C, Schwabe T, Preussler S, Scheytt J C and Schneider T 2022 Conference on Lasers and Electro-Optics (CLEO), 15-20, May 2022, p. 1-2
[15] Yue L, Li Y, Qiu J, Hong X, Guo H, Zuo Y and Wu J 2020 Opt. Commun. 455 124362
[16] Yoshida M, Kimura K, Iwaya T, Kasai K, Hirooka T and Nakazawa M 2019 Opt. Express 27 28952
[17] Soto M A, Alem M, Amin Shoaie M, Vedadi A, Brés C S, Thévenaz L and Schneider T 2013 Nat. Commun. 4 2898
[18] Nakazawa M, Yoshida M and Hirooka T 2014 Optica 1 15
[19] Boscolo S, Finot C and Turitsyn S K 2015 IEEE Photon. J. 7 7802008
[20] Michael Yang S M 2019 Modern Digital Radio Communication Signals and Systems, (Cham: Springer International Publishing), pp. 113-154
[21] Xue X, Grelu P, Yang B, Wang M, Li S, Zheng X and Zhou B 2023 Light: Science & Applications 12 19
[22] Schmogrow R, Hillerkuss D, Wolf S, Bäuerle B, Winter M, Kleinow P, Nebendahl B, Dippon T, Schindler P C, Koos C, Freude W and Leuthold J 2012 Opt. Express 20 6439
[23] Keller U 2003 Nature 424 831
[24] Han Y, Guo Y, Gao B, Ma C, Zhang R and Zhang H 2020 Progress in Quantum Electronics 71 100264
[25] Ma C, Wang C, Gao B, Adams J, Wu G and Zhang H 2019 Appl. Phys. Rev. 6 041304
[26] Li Y Y, Gao B, Ma C Y, Wu G, Huo J Y, Han Y, Wageh S, Al-Hartomy O A, Al-Sehemi A G, Liu L and Zhang H 2023 Laser & Photon. Rev. 17 2200596
[27] Grelu P and Akhmediev N 2012 Nat. Photon. 6 84
[28] Peng J and Zeng H 2019 Phys. Rev. Appl. 11 044068
[29] Agrawal G P 2007 Nonlinear Fiber Optics (Academic press)
[30] Oktem B, Ulgudur C and Ilday F O 2010 Nat. Photon. 4 307
[31] Peng J, Zhan L, Gu Z, Qian K, Luo S and Shen Q 2012 Phys. Rev. A 86 033808
[32] Dudley J M, Finot C, Richardson D J and Millot G 2007 Nat. Phys. 3 597
[33] Billet C, Dudley J M, Joly N and Knight J C 2005 Opt. Express 13 3236
[34] Ilday F O, Buckley J R, Clark W G and Wise F W 2004 Phys. Rev. Lett. 92 2139021
[35] Fermann M E, Kruglov V I, Thomsen B C, Dudley J M and Harvey J D 2000 Phys. Rev. Lett. 84 6010
[36] Sidorenko P, Fu W and Wise F 2019 Optica 6 1328
[1] Stable photocurrent-voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
Xin Liu(刘新), Zhi-Long Chen(陈之龙), Hu Wang(王虎), Wen-Qing Zhang(张雯清), Hao Dong(董昊), Peng-Xiang Wang(王鹏祥), and Yu-Chuan Shao(邵宇川). Chin. Phys. B, 2024, 33(4): 048101.
[2] Estimating the yield stress of soft materials via laser-induced breakdown spectroscopy
Shuhang Gong(龚书航), Yaju Li(李亚举), Dongbin Qian(钱东斌), Jinrui Ye(叶晋瑞), Kou Zhao(赵扣), Qiang Zeng(曾强), Liangwen Chen(陈良文), Shaofeng Zhang(张少锋), Lei Yang(杨磊), and Xinwen Ma(马新文). Chin. Phys. B, 2024, 33(3): 034211.
[3] Engineering the spectra of photon triplets generated from micro/nanofiber
Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义), Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统). Chin. Phys. B, 2024, 33(3): 034208.
[4] Residual stress modeling of mitigated fused silica damage sites with CO2 laser annealing
Chuanchao Zhang(张传超), Wei Liao(廖威), Lijuan Zhang(张丽娟), Xiaolong Jiang(蒋晓龙), Zhenhua Fang(方振华), and Xiaodong Jiang(蒋晓东). Chin. Phys. B, 2024, 33(3): 036101.
[5] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[6] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[7] On-chip ultrafast stackable dielectric laser positron accelerator
Bin Sun(孙斌), Yangfan He(何阳帆), Chenhao Pan(潘晨浩), Sijie Fan(樊思劼), Du Wang(王度), Shaoyi Wang(王少义), and Zongqing Zhao(赵宗清). Chin. Phys. B, 2024, 33(3): 034101.
[8] Generating attosecond pulses with controllable polarization from cyclic H32+ molecules by bichromatic circular fields
Si-Qi Zhang(张思琪), Bing Zhang(张冰), Bo Yan(闫博), Xiang-Qian Jiang(姜向前), and Xiu-Dong Sun(孙秀冬). Chin. Phys. B, 2024, 33(2): 023301.
[9] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[10] Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(2): 024209.
[11] Effect of sample temperature on femtosecond laser ablation of copper
Wei-Jie Dang(党伟杰), Yu-Tong Chen(陈雨桐), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2024, 33(2): 024207.
[12] Coherent optical frequency transfer via 972-km fiber link
Xue Deng(邓雪), Xiang Zhang(张翔), Qi Zang(臧琦), Dong-Dong Jiao(焦东东), Dan Wang(王丹), Jie Liu(刘杰), Jing Gao(高静), Guan-Jun Xu (许冠军), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 020602.
[13] In situ calibrated angle between the quantization axis and the propagating direction of the light field for trapping neutral atoms
Rui-Jun Guo(郭瑞军), Xiao-Dong He(何晓东), Cheng Sheng(盛诚), Kun-Peng Wang(王坤鹏), Peng Xu(许鹏), Min Liu(刘敏), Jin Wang(王谨), Xiao-Hong Sun(孙晓红), Yong Zeng(曾勇), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2024, 33(2): 023701.
[14] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[15] Using harmonic beam combining to generate pulse-burst in nonlinear optical laser
Yuan-Zhai Xu(许元斋), Zhen-Ling Li(李珍玲), Ao-Nan Zhang(张奥楠), Ke Liu(刘可), Jing-Jing Zhang(张晶晶), Xiao-Jun Wang(王小军), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦). Chin. Phys. B, 2024, 33(1): 014206.
No Suggested Reading articles found!