Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons
Xing-Yu Zhu(朱行宇)1,2, Le-Tian Zhu(朱乐天)1, Tao Tu(涂涛)1,3,†, and Chuan-Feng Li(李传锋)1,3,‡
1 Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China; 2 School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China; 3 Hefei National Laboratory, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230088, China
Abstract Spin qubits and superconducting qubits are promising candidates for realizing solid-state quantum information processors. Designing a hybrid architecture that combines the advantages of different qubits on the same chip is a highly desirable but challenging goal. Here we propose a hybrid architecture that utilizes a high-impedance SQUID array resonator as a quantum bus, thereby coherently coupling different solid-state qubits. We employ a resonant exchange spin qubit hosted in a triple quantum dot and a superconducting transmon qubit. Since this hybrid system is highly tunable, it can operate in a dispersive regime, where the interaction between the different qubits is mediated by virtual photons. By utilizing such interactions, entangling gate operations between different qubits can be realized in a short time of 30 ns with a fidelity of up to 96.5% under realistic parameter conditions. Further utilizing this interaction, remote entangled state between different qubits can be prepared and is robust to perturbations of various parameters. These results pave the way for exploring efficient fault-tolerant quantum computation on hybrid quantum architecture platforms.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974336 and 12304401), the National Key R&D Program of China (Grant No. 2017YFA0304100), the Key Project of Natural Science Research in Universities of Anhui Province (Grant No. KJ2021A1107), and the Scientific Research Foundation of Suzhou University (Grant Nos. 2020BS006 and 2021XJPT18).
Corresponding Authors:
Tao Tu, Chuan-Feng Li
E-mail: tutao@ustc.edu.cn;licf@ustc.edu.cn
Cite this article:
Xing-Yu Zhu(朱行宇), Le-Tian Zhu(朱乐天), Tao Tu(涂涛), and Chuan-Feng Li(李传锋) Remote entangling gate between a quantum dot spin and a transmon qubit mediated by microwave photons 2024 Chin. Phys. B 33 020315
[1] Burkard G, Ladd T D, Nichol J M, Pan A and Petta J R 2023 Rev. Mod. Phys.95 025003 [2] Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S and Oliver W D 2019 Appl. Phys. Rev.6 021318 [3] Yoneda J, Takeda K, Otsuka T, Nakajima T, Delbecq M R, Allison G, Honda T, Kodera T, Oda S, Hoshi Y, Usami N, Itoh K M and Tarucha S 2018 Nat. Nanotechnol.13 102 [4] Stano P and Loss D 2022 Nat. Rev. Phys.4 672 [5] Veldhorst M, Eenink H G J, Yang C H and Dzurak A S 2017 Nat. Commun.8 1766 [6] Li R, Petit L, Franke D P, Dehollain J P, Helsen J, Steudtner M, Thomas N K, Yoscovits Z R, Singh K J, Wehner S, Vandersypen L M K, Clarke J S and Veldhorst M 2018 Sci. Adv.4 eaar3960 [7] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, OMalley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N and Martinis J M 2014 Nature508 500 [8] Sheldon S, Magesan E, Chow J M and Gambetta J M 2016 Phys. Rev. A93 060302 [9] Arute F, Arya K, Babbush R, et al. 2019 Nature574 505 [10] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys.93 025005 [11] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature431 162 [12] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A69 062320 [13] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature449 443 [14] DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M and Schoelkopf R J 2009 Nature460 240 [15] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature555 599 [16] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science359 1123 [17] Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2018 Nature560 179 [18] Borjans F, Croot X G, Mi X, Gullans M J and Petta J R 2020 Nature577 195 [19] Harvey-Collard P, Dijkema J, Zheng G, Sammak A, Scappucci G and Vandersypen L M K 2022 Phys. Rev. X12 021026 [20] Medford J, Beil J, Taylor J M, Rashba E I, Lu H, Gossard A C and Marcus C M 2013 Phys. Rev. Lett.111 050501 [21] Taylor J M, Srinivasa V and Medford J 2013 Phys. Rev. Lett.111 050502 [22] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Phys. Rev. A76 042319 [23] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X7 011030 [24] Landig A J, Koski J V, Scarlino P, Muller C, Abadillo-Uriel J C, Kratochwil B, Reichl C, Wegscheider W, Coppersmith S N, Friesen M, Wallraff A, Ihn T and Ensslin K 2019 Nat. Commun.10 5037 [25] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science309 2180 [26] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett.101 230501 [27] Zhu X Y, Tu T, Guo A L, Guo G C and Li C F 2021 Phys. Rev. A104 032409 [28] Zhu X Y, Tu T, Guo G C and Li C F 2023 Phys. Rev. A107 033708 [29] Schrieffer J R and Wolff P A 1966 Phys. Rev.149 491 [30] Eng K, Ladd T D, Smith A, Borselli M G, Kiselev A A, Fong B H, Holabird K S, Hazard T M, Huang B, Deelman P W, Milosavljevic I, Schmitz A E, Ross R S, Gyure M F and Hunter A T 2015 Sci. Adv.1 e150021 [31] Blumoff J Z, Pan A S, Keating T E, Andrews R W, Barnes D W, Brecht T L, Croke E T, Euliss L E, Fast J A, Jackson C A C, Jones A M, Kerckhoff J, Lanza R K, Raach K, Thomas B J, Velunta R, Weinstein A J, Ladd T D, Eng K, Borselli M G, Hunter A T and Rakher M T 2022 PRX Quantum3 010352 [32] Wei K X, Lauer I, Srinivasan S, Sundaresan N, McClure D T, Toyli D, McKay D C, Gambetta J M and Sheldon S 2020 Phys. Rev. A101 032343 [33] Nielsen M A 2002 Phys. Lett. A303 249 [34] Gilchrist A, Langford N K and Nielsen M A 2005 Phys. Rev. A71 062310 [35] Dur W and Briegel H J 2007 Rep. Prog. Phys.70 1381 [36] Nickerson N H, Fitzsimons J F and Benjamin S C 2014 Phys. Rev. X4 041041 [37] Andrews R W, Jones C, Reed M D, Jones A M, Ha S D, Jura M P, Kerckhoff J, Levendorf M, Meenehan S, Merkel S T, Smith A, Sun B, Weinstein A J, Rakher M T, Ladd T D and Borselli M G 2019 Nat. Nanotechnol.14 747 [38] Guo A L, Tu T, Zhu L T and Li C F 2021 Chin, Phys. Lett.38 094203 [39] Guo A L, Tu T, Zhu L T, Li C F and Guo G C 2022 Phys. Rev. A106 032411 [40] Zhu L T, Tu T, Guo A L and Li C F 2022 Chin. Phys. B31 120302
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.