Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024204    DOI: 10.1088/1674-1056/ad0f86
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium

Yan Ma(马燕)1,2, Xin Yang(杨欣)3, Hong Chang(常虹)1,2, Xin-Qi Yang(杨鑫琪)1,2, Ming-Tao Cao(曹明涛)1,2,†, Xiao-Fei Zhang(张晓斐)4, Hong Gao(高宏)3, Rui-Fang Dong(董瑞芳)1,2,5,‡, and Shou-Gang Zhang(张首刚)1,2,§
1 Key Laboratory of Time Reference and Applications, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
4 Department of Physics, Shaanxi University of Science and Technology, Xi'an 710021, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  The perfect hybrid vector vortex beam (PHVVB) with helical phase wavefront structure has aroused significant concern in recent years, as its beam waist does not expand with the topological charge (TC). In this work, we investigate the spatial quantum coherent modulation effect with PHVVB based on the atomic medium, and we observe the absorption characteristic of the PHVVB with different TCs under variant magnetic fields. We find that the transmission spectrum linewidth of PHVVB can be effectively maintained regardless of the TC. Still, the width of transmission peaks increases slightly as the beam size expands in hot atomic vapor. This distinctive quantum coherence phenomenon, demonstrated by the interaction of an atomic medium with a hybrid vector-structured beam, might be anticipated to open up new opportunities for quantum coherence modulation and accurate magnetic field measurement.
Keywords:  perfect hybrid vector vortex beam      topological charge      quantum coherence      optical manipulation  
Received:  23 October 2023      Revised:  21 November 2023      Accepted manuscript online:  24 November 2023
PACS:  42.50.-p (Quantum optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.30.Dx (Magnetic resonance spectra)  
Fund: Project supported by the Youth Innovation Promotion Association CAS and State Key Laboratory of Transient Optics and Photonics Open Topics (Grant No. SKLST202222).
Corresponding Authors:  Ming-Tao Cao, Rui-Fang Dong, Shou-Gang Zhang     E-mail:  mingtaocao@ntsc.ac.cn;dongruifang@ntsc.ac.cn;szhang@ntsc.ac.cn

Cite this article: 

Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚) Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium 2024 Chin. Phys. B 33 024204

[1] Naidoo D, Roux F S, Dudley A, Litvin I, Piccirillo B, Marrucci L and Forbes A 2016 Nat. Photonics 10 327
[2] Hu Z, Liu H, Xia J, He A, Li H, Du Z, Chen T, Li Z and Lu Y 2020 Appl. Opt. 59 9956
[3] Chen Y, Fang Z X, Ren Y X, Gong L and Lu R D 2015 Appl. Opt. 54 8030
[4] Bao Y J, Ni J C and Qiu C W 2020 Adv. Mater. 32 1905659
[5] Fu S Y, Wang T L and Gao C Q 2016 Appl. Opt. 55 6501
[6] Liu Y C, Ke Y G, Zhou J X, Liu Y Y, Luo H L, Wen S C and Fan D Y 2017 Sci. Rep. 7 44096
[7] Ostrovsky A S, Rickenstorff-Parrao C and Arrizon V 2013 Opt. Lett. 38 534
[8] Xin Z Q, Zhang C L and Yuan X C 2017 IEEE Photon. J. 9 7903107
[9] Liu S, Qi S X, Zhang Y, Li P, Wu D J, Han L and Zhao J L 2018 Photonics Res. 6 228
[10] Sun R S, Liu T, Ren Y, Liu Z L and Li R J 2022 Acta Opt. Sin. 42 2226001
[11] Ke Y G, Chen S Z, Shu W X and Luo H L 2019 Opt. Commun. 446 191
[12] Liu J M, Chen X Y, He Y L, Lu L M, Ye H P, Chai G Y, Chen S Q and Fan D Y 2020 Results Phys. 19 103455
[13] Li Y K, Wang J W, Yang X, Chen Y, Chen X Y, Cao M T, Wei D, Gao H and Li F L 2019 Chin. Phys. B 28 014205
[14] Yang X, Fang A, Wang J, Li Y, Chen X, Zhang X, Cao M, Wei D, Muller-Dethlefs K, Gao H and Li F 2019 Opt. Express 27 3900
[15] Chen Y, Wang J, Wang C, Zhang S, Cao M, Franke-Arnold S, Gao H and Li F 2021 Opt. Express 29 31582
[16] Chang H, Yang X, Wang J, Ma Y, Yang X, Cao M, Zhang X, Gao H, Dong R and Zhang S 2023 Chin. Phys. B 32 034207
[17] Wang J, Yang X, Li Y, Chen Y, Cao M, Wei D, Gao H and Li F 2018 Photonics Res. 6 451
[18] Wang J W, Yang X, Dou Z H, Qiu S W, Liu J, Chen Y, Cao M T, Chen H X, Wei D, Muller-Dethlefs K, Gao H and Li F L 2019 Appl. Phys. Lett. 115 221101
[19] Francica G, Binder F C, Guarnieri G, Mitchison M T, Goold J and Plastina F 2020 Phys. Rev. Lett. 125 180603
[20] Xi Z, Li Y and Fan H 2015 Sci. Rep. 5 10922
[21] Cho S U, Moon H S, Chough Y T, Bae M H and Kim N 2014 Phys. Rev. A 89 053814
[22] Xiao Y H, Klein M, Hohensee M, Jiang L, Phillips F, Lukin M D and Walsworth R L 2008 Phys. Rev. Lett. 101 043601
[23] Yang X, Chen Y, Wang J, Dou Z, Cao M, Wei D, Batelaan H, Gao H and Li F 2019 Opt. Lett. 44 2911
[24] Qiu S W, Wang J W, Castellucci F, Cao M T, Zhang S G, Clark T W, Franke-Arnold S, Gao H and Li F L 2021 Photonics Res. 9 2325
[25] Ahmed H, Ansari M A, Li Y, Zentgraf T, Mehmood M Q and Chen X 2023 Nat. Commun. 14 3915
[26] Liu Y, Ke Y, Zhou J, Liu Y, Luo H, Wen S and Fan D 2017 Sci. Rep. 7 44096
[27] Schaefer B, Collett E, Smyth R, Barrett D and Fraher B 2007 Am. J. Phys. 75 163
[28] Milione G, Sztul H, Nolan D and Alfano R 2011 Phys. Rev. Lett. 107 053601
[29] Siddons P, Adams C S, Ge C and Hughes I G 2008 J. Phys. B: At. Mol. Opt. Phys. 41 155004
[1] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[2] Performance analysis of single-focus phase singularity based on elliptical reflective annulus quadrangle-element coded spiral zone plates
Huaping Zang(臧华平), Baozhen Wang(王宝珍), Chenglong Zheng(郑程龙), Lai Wei(魏来), Quanping Fan(范全平), Shaoyi Wang(王少义), Zuhua Yang(杨祖华), Weimin Zhou(周维民), Leifeng Cao(曹磊峰), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(1): 014209.
[3] Terahertz quasi-perfect vortex beam with integer-order and fractional-order generated by spiral spherical harmonic axicon
Si-Yu Tu(涂思语), De-Feng Liu(刘德峰), Jin-Song Liu(刘劲松), Zhen-Gang Yang(杨振刚), and Ke-Jia Wang(王可嘉). Chin. Phys. B, 2024, 33(1): 014211.
[4] Transverse manipulation of particles using Bessel beam of tunable size generated by cross-phase modulation
Xiang-Lai Qiao(乔响来), Xue-Mei Cheng(程雪梅), Qian Zhang(张倩), Wen-Ding Zhang(张文定), Zhao-Yu Ren(任兆玉), and Jin-Tao Bai(白晋涛). Chin. Phys. B, 2023, 32(4): 048703.
[5] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[6] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[7] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[8] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[9] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[10] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[13] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[14] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[15] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
No Suggested Reading articles found!