Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020603    DOI: 10.1088/1674-1056/ad071a
GENERAL Prev   Next  

Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space

Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义)
School of Computer and Information, Hefei University of Technology, Hefei 230009, China
Abstract  The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed. The spectrum spreads of different orbital angular momentum (OAM) modes in different non-line-of-sight situations are simulated. The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space. According to the research, the effects about spectrum spreads of higher OAM modes are more obvious. The error in detection is mainly affected by OAM spectrum spreading, which can be reduced by reasonably using different combinations of OAM modes in different practical situations. The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
Keywords:  vortex electromagnetic waves      detect accelerations      keyhole space      spectrum spread  
Received:  14 September 2023      Revised:  20 October 2023      Accepted manuscript online:  26 October 2023
PACS:  06.30.Gv (Velocity, acceleration, and rotation)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804073 and 61775050).
Corresponding Authors:  Kai Guo     E-mail:  kai.guo@hfut.edu.cn

Cite this article: 

Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义) Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space 2024 Chin. Phys. B 33 020603

[1] Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D and Isham B 2009 IEEE Trans. Antennas Propag. 58 565
[2] Edfors O and Johansson A J 2012 IEEE Trans. Antennas Propag. 60 1126
[3] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A. 45 8185
[4] Chen R, Xu H, Moretti M and Li J D 2018 IEEE Wireless. Commun. Lett. 7 582
[5] Lei Y, Yang Y, Wang Y Z, Guo K, Gong Y B and Guo Z Y 2021 IEEE Wireless. Commun. Lett. 10 261
[6] Wang Y L, Wang Y Z and Guo Z Y 2022 Measurement 189 110600
[7] Liu D, Shi H Y, Liu H, Yang T and Guo J W 2023 IEEE Sens. J. 23 8478
[8] Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L and Li X 2014 IEEE Antennas Wireless Propag. Lett. 14 711
[9] Bu L, Zhu Y, Chen Y, Song X O, Yang Y F and Zang Y D 2022 Remote. Sens-Basel 14 5908
[10] Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G and Gu W Y 2016 Opt. Lett. 41 2549
[11] Zhou Z L, Cheng Y Q, Liu K and Liu H Y 2018 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT)
[12] Wang Y Z, Wang Y L, Guo K and Guo Z Y 2022 Measurement 187 110278
[13] Xu P, Liu H X, Li L, Zhang K Y and Li L 2022 IEEE Trans. Antennas Propag. 70 10678
[14] Xu P, Li L, Li R J and Liu H X 2022 IEEE Trans. Antennas Propag. 69 7041
[15] Xie M T, Guo X L, Zhao M Y, Zhai W S, Xu W J, Qian J W, Lei M Z and Huang S G 2017 IEEE Antennas Wireless Propag. Lett. 16 1143
[16] Yao Y, Liang X L, Zhu M H, Zhu W R, Geng J P and Jin R H 2019 IEEE Trans. Antennas Propag. 67 2085
[17] Torner L, Torres J P and Carrasco S 2005 Opt. Express 13 873
[18] Ren Y X, Huang H, Xie G D, et al. 2013 Opt. Lett. 38 4062
[19] Wang H Y, Yang Z H, Liu L, Chen Y H, Wang F and Cai Y J 2023 Opt. Express 31 916
[20] Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q and Zhang D 2016 Appl. Opt. 55 4642
[21] Hu Y Y, Zhang M, Dou J T, Zhao J and Li B 2022 Opt. Express 30 42772
[22] Mitri F G 2011 IEEE Trans. Antennas Propag. 59 4375
[23] Liu K, Liu H Y, Wei E. I. Sha, Cheng Y Q and Wang H Q 2020 IEEE Antennas Wireless Propag. Lett. 19 1167
[24] Sun M H, Liu S H, Guo L X, Huang K and Cheng M J 2023 J. Appl. Phys. 133 124905
[25] Liu K, Li X, Gao Y, Wang H Q and Cheng Y Q 2017 J. Appl. Phys. 122 124903
[26] Gong T, Cheng Y Q, Li X and Chen D C 2018 IEEE Microw. Wirel. Co. 28 843
[27] Zheng J Y, Zheng S L, Shao Z L and Zhang X M 2018 J. Appl. Phys. 124 164907
[28] Zhou Z L, Cheng Y Q, Liu K, Wang H Q and Qin Y L 2019 IEEE Sens. Lett. 3 2475
[29] Liu B Y, Henry Giddens, Li Y, He Y J, Wong S W and Hao Y 2020 Opt. Express 28 3745
[30] Wang Y, Liu K, Liu H Y, Wang J Q and Cheng Y Q 2021 IEEE Sens. J. 21 4989
[31] Chizhik D, Foschini G J, Gans M J and Valenzuela R A 2002 IEEE Trans. Wireless. Commun. 1 361
[32] Almers P, Tufvesson F and Andreas Molisch F 2003 IEEE Trans. Wireless. Commun. 5 3596
[33] Chen R, Xu H, Wang X D and Li J D 2018 IEEE Wireless. Commun. Lett. 8 313
[34] Das D, Bora P K and Bhattacharjee R 2018 IEEE Commun. Lett. 22 1834
[35] Yang Y, Gong Y B, Guo K, Shen F, Sun J H and Guo Z Y 2020 IEEE Access 8 53232
[36] Gong T, Cheng Y Q, Li X and Chen D C 2018 IEEE Microw. Wirel Technol. 28 843
[37] Qiu S, Ding Y, Liu T, Liu Z L and Ren Y 2022 Opt. Express 30 20441
[1] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[2] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[3] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[4] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[5] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[6] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
[7] A scheme for Sagnac-effect quantum enhancement with Fock state light input
Kun Chen(陈坤), Shu-Xin Chen(陈树新), De-Wei Wu(吴德伟), Chun-Yan Yang(杨春燕), Qiang Miao(苗强). Chin. Phys. B, 2017, 26(9): 094212.
[8] Precision measurement with atom interferometry
Wang Jin (王谨). Chin. Phys. B, 2015, 24(5): 053702.
[9] Suppressing the mechanical quadrature error of a quartz double-H gyroscope through laser trimming
Zhao Ke (赵克), Feng Li-Hui (冯立辉), Wang Qian-Qian (王茜蒨), Liu Ming-Zhi (刘明智), Wang Ben-Guo (王本国), Cui Fang (崔芳), Sun Yu-Nan (孙雨南). Chin. Phys. B, 2013, 22(11): 117901.
No Suggested Reading articles found!