|
|
Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space |
Kai Guo(郭凯)†, Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义) |
School of Computer and Information, Hefei University of Technology, Hefei 230009, China |
|
|
Abstract The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed. The spectrum spreads of different orbital angular momentum (OAM) modes in different non-line-of-sight situations are simulated. The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space. According to the research, the effects about spectrum spreads of higher OAM modes are more obvious. The error in detection is mainly affected by OAM spectrum spreading, which can be reduced by reasonably using different combinations of OAM modes in different practical situations. The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
|
Received: 14 September 2023
Revised: 20 October 2023
Accepted manuscript online: 26 October 2023
|
PACS:
|
06.30.Gv
|
(Velocity, acceleration, and rotation)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804073 and 61775050). |
Corresponding Authors:
Kai Guo
E-mail: kai.guo@hfut.edu.cn
|
Cite this article:
Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义) Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space 2024 Chin. Phys. B 33 020603
|
[1] Mohammadi S M, Daldorff L K S, Bergman J E S, Karlsson R L, Thide B, Forozesh K, Carozzi T D and Isham B 2009 IEEE Trans. Antennas Propag. 58 565 [2] Edfors O and Johansson A J 2012 IEEE Trans. Antennas Propag. 60 1126 [3] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A. 45 8185 [4] Chen R, Xu H, Moretti M and Li J D 2018 IEEE Wireless. Commun. Lett. 7 582 [5] Lei Y, Yang Y, Wang Y Z, Guo K, Gong Y B and Guo Z Y 2021 IEEE Wireless. Commun. Lett. 10 261 [6] Wang Y L, Wang Y Z and Guo Z Y 2022 Measurement 189 110600 [7] Liu D, Shi H Y, Liu H, Yang T and Guo J W 2023 IEEE Sens. J. 23 8478 [8] Liu K, Cheng Y Q, Yang Z C, Wang H Q, Qin Y L and Li X 2014 IEEE Antennas Wireless Propag. Lett. 14 711 [9] Bu L, Zhu Y, Chen Y, Song X O, Yang Y F and Zang Y D 2022 Remote. Sens-Basel 14 5908 [10] Zhao M Y, Gao X L, Xie M T, Zhai W S, Xu W J, Huang S G and Gu W Y 2016 Opt. Lett. 41 2549 [11] Zhou Z L, Cheng Y Q, Liu K and Liu H Y 2018 IEEE International Conference on Microwave and Millimeter Wave Technology (ICMMT) [12] Wang Y Z, Wang Y L, Guo K and Guo Z Y 2022 Measurement 187 110278 [13] Xu P, Liu H X, Li L, Zhang K Y and Li L 2022 IEEE Trans. Antennas Propag. 70 10678 [14] Xu P, Li L, Li R J and Liu H X 2022 IEEE Trans. Antennas Propag. 69 7041 [15] Xie M T, Guo X L, Zhao M Y, Zhai W S, Xu W J, Qian J W, Lei M Z and Huang S G 2017 IEEE Antennas Wireless Propag. Lett. 16 1143 [16] Yao Y, Liang X L, Zhu M H, Zhu W R, Geng J P and Jin R H 2019 IEEE Trans. Antennas Propag. 67 2085 [17] Torner L, Torres J P and Carrasco S 2005 Opt. Express 13 873 [18] Ren Y X, Huang H, Xie G D, et al. 2013 Opt. Lett. 38 4062 [19] Wang H Y, Yang Z H, Liu L, Chen Y H, Wang F and Cai Y J 2023 Opt. Express 31 916 [20] Cheng M J, Guo L X, Li J T, Huang Q Q, Cheng Q and Zhang D 2016 Appl. Opt. 55 4642 [21] Hu Y Y, Zhang M, Dou J T, Zhao J and Li B 2022 Opt. Express 30 42772 [22] Mitri F G 2011 IEEE Trans. Antennas Propag. 59 4375 [23] Liu K, Liu H Y, Wei E. I. Sha, Cheng Y Q and Wang H Q 2020 IEEE Antennas Wireless Propag. Lett. 19 1167 [24] Sun M H, Liu S H, Guo L X, Huang K and Cheng M J 2023 J. Appl. Phys. 133 124905 [25] Liu K, Li X, Gao Y, Wang H Q and Cheng Y Q 2017 J. Appl. Phys. 122 124903 [26] Gong T, Cheng Y Q, Li X and Chen D C 2018 IEEE Microw. Wirel. Co. 28 843 [27] Zheng J Y, Zheng S L, Shao Z L and Zhang X M 2018 J. Appl. Phys. 124 164907 [28] Zhou Z L, Cheng Y Q, Liu K, Wang H Q and Qin Y L 2019 IEEE Sens. Lett. 3 2475 [29] Liu B Y, Henry Giddens, Li Y, He Y J, Wong S W and Hao Y 2020 Opt. Express 28 3745 [30] Wang Y, Liu K, Liu H Y, Wang J Q and Cheng Y Q 2021 IEEE Sens. J. 21 4989 [31] Chizhik D, Foschini G J, Gans M J and Valenzuela R A 2002 IEEE Trans. Wireless. Commun. 1 361 [32] Almers P, Tufvesson F and Andreas Molisch F 2003 IEEE Trans. Wireless. Commun. 5 3596 [33] Chen R, Xu H, Wang X D and Li J D 2018 IEEE Wireless. Commun. Lett. 8 313 [34] Das D, Bora P K and Bhattacharjee R 2018 IEEE Commun. Lett. 22 1834 [35] Yang Y, Gong Y B, Guo K, Shen F, Sun J H and Guo Z Y 2020 IEEE Access 8 53232 [36] Gong T, Cheng Y Q, Li X and Chen D C 2018 IEEE Microw. Wirel Technol. 28 843 [37] Qiu S, Ding Y, Liu T, Liu Z L and Ren Y 2022 Opt. Express 30 20441 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|