Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 020313    DOI: 10.1088/1674-1056/ad062a
GENERAL Prev   Next  

Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources

Le-Chen Xu(徐乐辰)1,2,3, Chun-Hui Zhang(张春辉)1,2,3, Xing-Yu Zhou(周星宇)1,2,3, and Qin Wang(王琴)1,2,3,†
1 Institute of Quantum Information and Technology, Nanjing 210003, China;
2 Broadband Wireless Communication and Sensor Network Technology, Key Laboratory of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Telecommunication and Networks National Engineering Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Encoding system plays a significant role in quantum key distribution (QKD). However, the security and performance of QKD systems can be compromised by encoding misalignment due to the inevitable defects in realistic devices. To alleviate the influence of misalignments, a method exploiting statistics from mismatched basis is proposed to enable uncharacterized sources to generate secure keys in QKD. In this work, we propose a scheme on four-intensity decoy-state quantum key distribution with uncharacterized heralded single-photon sources. It only requires the source states are prepared in a two-dimensional Hilbert space, and can thus reduce the complexity of practical realizations. Moreover, we carry out corresponding numerical simulations and demonstrate that our present four-intensity decoy-state scheme can achieve a much higher key rate compared than a three-intensity decoy-state method, and meantime it can obtain a longer transmission distance compared than the one using weak coherent sources.
Keywords:  quantum key distribution      heralded single-photon source      decoy-state method  
Received:  12 September 2023      Revised:  13 October 2023      Accepted manuscript online:  24 October 2023
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  42.65.Lm (Parametric down conversion and production of entangled photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074194, 12104240, and 62101285), the Industrial Prospect and Key Core Technology Projects of Jiangsu Provincial Key Research and Development Program (Grant No. BE2022071), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20192001 and BK20210582).
Corresponding Authors:  Qin Wang     E-mail:  qinw@njupt.edu.cn

Cite this article: 

Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴) Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources 2024 Chin. Phys. B 33 020313

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, 1984, New York, pp. 175-179
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Lo H K and Chau H F 1999 Science 283 2050
[4] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[5] Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C and Karlsson A 2008 Phys. Rev. Lett. 100 090501
[6] Liu Y, Chen T Y, Wang J, Cai W Q, Wan X, Chen L K, Wang J H, Liu S B, Liang H, Yang L, Peng C Z, Chen K, Chen Z B and Pan J W 2010 Opt. Express 18 8587
[7] Stucki D, Legre M, Buntschu F, et al. 2011 New J. Phys. 13 123001
[8] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[9] Wang S, Yin Z Q, Chen W, He D Y, Song X T, Li H W, Zhang L J, Zhou Z, Guo G C and Han Z F 2015 Nat. Photon. 9 832
[10] Zhang C H, Wang D, Zhou X Y, Wang S, Zhang L B, Yin Z Q, Chen W, Han Z F, Guo G C and Wang Q 2018 Opt. Express 26 25921
[11] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[12] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C and Han Z F 2019 Phys. Rev. X 9 021046
[13] Gottesman D, Lo H K, Lutkenhaus N and Preskill J 2004 Quantum Inf. Comput. 4 325
[14] Wang X B 2005 Phys. Rev. Lett. 94 230503
[15] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[16] Qi B, Fung C H F, Lo H K and Ma X 2007 Quantum Inf. Comput. 7 73
[17] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314
[18] Laing A, Scarani V, Rarity J G and O'Brien, J L 2010 Phys. Rev. A 82 012304
[19] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503
[20] Tamaki K, Curty M, Kato G, Lo H K and Azuma K 2014 Phys. Rev. A 90 052314
[21] Yin Z Q, Fung C H F, Ma X, Zhang C M, Li H W, Chen W, Wang S, Guo G C and Han Z F 2014 Phys. Rev. A 90 052319
[22] Wang C, Wang S, Yin Z Q, Chen W, Li H W, Zhang C M, Ding Y Y, Guo G C and Han Z F 2016 Opt. Lett. 41 5596
[23] Zhu J R, Wu W Z, Ji L and Wang Q 2019 Opt. Lett. 44 5703
[24] Zhou X Y, Ding H J, Zhang C H, Li J, Zhang C M and Wang Q 2020 Opt. Lett. 45 4176
[25] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[26] Wang Q and Wang X B 2013 Phys. Rev. A 88 052332
[27] Zhou X Y, Zhang C H, Zhang C M and Wang Q 2017 Phys. Rev. A 96 052337
[28] Zhang Z, Zhao Q, Razavi M and Ma X 2017 Phys. Rev. A 95 012333
[29] Mao C C, Zhou X Y, Zhu J R, Zhang C H, Zhang C M and Wang Q 2018 Opt. Express 26 13289
[30] Liu Y, Zhang W J, Jiang C, Chen J P, Zhang C, Pan W X, Ma D, Dong H, Xiong J M, Zhang C J, Li H, Wang R C, Wu J, Chen T Y, You L, Wang X B, Zhang Q and Pan J W 2023 Phys. Rev. Lett. 130 210801
[1] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[2] Improved statistical fluctuation analysis for two decoy-states phase-matching quantum key distribution
Jiang-Ping Zhou(周江平), Yuan-Yuan Zhou(周媛媛), Xue-Jun Zhou(周学军), and Xuan Bao(暴轩). Chin. Phys. B, 2023, 32(8): 080306.
[3] Effect of weak randomness flaws on security evaluation of practical quantum key distribution with distinguishable decoy states
Yu Zhou(周雨), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞),Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050305.
[4] Phase-matching quantum key distribution with imperfect sources
Xiao-Xu Zhang(张晓旭), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), Mu-Sheng Jiang(江木生), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yu Zhou(周雨), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2023, 32(5): 050308.
[5] Security of the traditional quantum key distribution protocols with finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[6] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[7] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[10] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[11] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[12] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[13] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[14] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[15] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
No Suggested Reading articles found!