|
|
Coherence of nonlinear Bloch dynamics of Bose—Einstein condensates in deep optical lattices |
Ai-Xia Zhang(张爱霞)†, Wei Zhang(张薇), Jie Wang(王杰), Xiao-Wen Hu(胡潇文), Lai-Lai Mi(米来来), and Ju-Kui Xue(薛具奎)‡ |
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract Atomic interaction leads to dephasing and damping of Bloch oscillations (BOs) in optical lattices, which limits observation and applications of BOs. How to obtain persistent BOs is particularly important. Here, the nonlinear Bloch dynamics of the Bose—Einstein condensate with two-body and three-body interactions in deep optical lattices is studied. The damping rate induced by interactions is obtained. The damping induced by two-body interaction plays a dominant role, while the damping induced by three-body interaction is weak. However, when the two-body and three-body interactions satisfy a threshold, long-lived coherent BOs are observed. Furthermore, the Bloch dynamics with periodical modulation of linear force is studied. The frequencies of linear force corresponding to resonance and pseudoresonance are obtained, and rich dynamical phenomena, i.e., stable and strong BOs, drifting and dispersion of wave packet, are predicted. The controllable Bloch dynamics is provided with the periodic modulation of the linear force.
|
Received: 21 October 2023
Revised: 31 December 2023
Accepted manuscript online: 05 January 2024
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12264045, 12164042, 11764039, 11847304, and 11865014), the Natural Science Foundation of Gansu Province (Grant No. 17JR5RA07620JR5RA526), the Scientific Research Project of Gansu Higher Education (Grant No. 2016A-005), the Innovation Capability Enhancement Project of Gansu Higher Education (Grant Nos. 2020A- 146 and 2019A-014), and the Creation of Science and Technology of Northwest Normal University (Grant No. NWNULKQN-18-33). |
Corresponding Authors:
Ai-Xia Zhang, Ju-Kui Xue
E-mail: zhangax@nwnu.edu.cn;xuejk@nwnu.edu.cn
|
Cite this article:
Ai-Xia Zhang(张爱霞), Wei Zhang(张薇), Jie Wang(王杰), Xiao-Wen Hu(胡潇文), Lai-Lai Mi(米来来), and Ju-Kui Xue(薛具奎) Coherence of nonlinear Bloch dynamics of Bose—Einstein condensates in deep optical lattices 2024 Chin. Phys. B 33 040305
|
[1] Feldmann J, Leo K, ShahJ, Miller D A B, Cunningham J E, Meier T, von Plessen G, Schulze A, Thomas P and Schmitt-Rink S 1992 Phys. Rev. B 46 7252 [2] Leo K, Bolivar P H, Brggemann F, Schwedler R and Khler K 1992 Solid State Commun. 84 943 [3] Waschke C, Roskos H G, Schwedler R, Leo K, Kurz H and Khler K 1993 Phys. Rev. Lett. 70 3319 [4] Morsch O, Mller J H, Cristiani M, Ciampini D and Arimondo E 2001 Phys. Rev. Lett. 87 140402 [5] Cristiani M, Morsch O, Mller J H, Ciampini D and Arimondo E 2002 Phys. Rev. A 65 063612 [6] Peschel U, Pertsch T and Lederer F 1998 Opt. Lett. 23 1701 [7] Pertsch T, Dannberg P, Elflein W, Bruer A and Lederer F 1999 Phys. Rev. Lett. 83 4752 [8] Morandotti R, Peschel U, Aitchison J S, Eisenberg H S and Silberberg Y 1999 Phys. Rev. Lett. 83 4756 [9] Sapienza R, Costantino P, Wiersma D, Ghulinyan M, Oton C J and Pavesi L 2003 Phys. Rev. Lett. 91 263902 [10] Trompeter H, Krolikowski W, Neshev D N, Desyatnikov A S, Sukhorukov A A, Kivshar Y S, Pertsch T, Peschel U and Lederer F 2006 Phys. Rev. Lett. 96 053903 [11] Wu B and Niu Q 2003 New J. Phys. 5 104 [12] Machholm M, Pethick C J and Smith H 2003 Phys. Rev. A 67 053613 [13] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294 [14] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353 [15] Gustavsson M, Haller E, Mark M J, Danzl J G, Rojas-Kopeinig G and Nägerl H C 2008 Phys. Rev. Lett. 100 080404 [16] Fattori M, D'Errico C, Roati G, Zaccanti M, Jona-Lasinio M, Modugno M, Inguscio M and Modugno G 2008 Phys. Rev. Lett. 100 080405 [17] Witthaut D, Werder M, Mossmann S and Korsch H J 2005 Phys. Rev. E 71 036625 [18] Buchleitner A and Kolovsky A R 2003 Phys. Rev. Lett. 91 253002 [19] Gammal A, Frederico T, Tomio L and Abdullaev F Kh 2000 Phys. Lett. A 267 305 [20] Abdullaev F K, Gammal A, Tomio L and Frederico T 2001 Phys. Rev. A 63 043604 [21] Bulgac A 2002 Phys. Rev. Lett. 89 050402 [22] Khler T 2002 Phys. Rev. Lett. 89 210404 [23] Leanhardt A E, Chikkatur A P, Kielpinski D, Shin Y, Gustavson T L, Ketterle W and Pritchard D E 2002 Phys. Rev. Lett. 89 040401 [24] Pieri P and Strinati G C 2003 Phys. Rev. Lett. 91 030401 [25] Zhang W, Wright E M, Pu H and Meystre P 2003 Phys. Rev. A 68 023605 [26] Akhmediev N, Das M P and Vagov A V 1999 Int. J. Mod. Phys. B 13 625 [27] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624 [28] Abdullaev F K and Salerno M 2005 Phys. Rev. A 72 033617 [29] Merhasin I M, Gisin B V, Driben R and Malomed B A 2005 Phys. Rev. E 71 016613 [30] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, Torner L and Malomed B A 2006 Phys. Rev. Lett. 97 073904 [31] Dunlap D H and Kenkre V M 1986 Phys. Rev. B 34 3625 [32] Holthaus M 1992 Phys. Rev. Lett. 69 351 [33] Zenesini A, Lignier H, Ciampini D, Morsch O and Arimondo E 2009 Phys. Rev. Lett. 102 100403 [34] Eckardt A, Weiss C and Holthaus M 2005 Phys. Rev. Lett. 95 260404 [35] Longhi S, Marangoni M, Lobino M, Ramponi R, Laporta P, Cianci E and Foglietti V 2006 Phys. Rev. Lett. 96 243901 [36] Iyer R, Aitchison J S, Wan J, Dignam M M and de Sterke C M 2007 Opt. Express 15 3212 [37] Dreisow F, Heinrich M, Szameit A, Dring S, Nolte S, Tnnermann A, Fahr S and Lederer F 2008 Opt. Express 16 3474 [38] Arlinghaus S, Langemeyer M and Holthaus M 2011 Dynamical Tunneling:Theory and Experiment (New York:Taylor & Francis) p. 289 [39] Madison K W, Fischer M C, Diener R B, Niu Q and Raizen M G 1998 Phys. Rev. Lett. 81 5093 [40] Wintersperger K, Bukov M, Nager J, Lellouch S, Demler E, Schneider U, Bloch I, Goldman N and Aidelsburger M 2020 Phys. Rev. X 10 011030 [41] Ha L C, Hung C L, Zhang X, Eismann U, Tung S K and Chin C 2013 Phys. Rev. Lett. 110 145302 [42] Mestrom P M A, Colussi V E, Secker T, Groeneveld G P and Kokkelmans S J J M F 2020 Phys. Rev. Lett. 124 143401 [43] Tan S 2008 Phys. Rev. A 78 013636 [44] Zhu S and Tan S 2017 arXiv:1710.04147[cond-mat.quant-gas] [45] Hammond A, Lavoine L and Bourdel T 2022 Phys. Rev. Lett. 128 083401 [46] Kurizki G, Kozhekin A E, Opatrny T and Malomed B A 2001 Prog. Opt. 42 93 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|