Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034205    DOI: 10.1088/1674-1056/ad0142
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diffraction deep neural network-based classification for vector vortex beams

Yixiang Peng(彭怡翔)1, Bing Chen(陈兵)1, Le Wang(王乐)1, and Shengmei Zhao(赵生妹)1,2,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing 210003, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The vector vortex beam (VVB) has attracted significant attention due to its intrinsic diversity of information and has found great applications in both classical and quantum communications. However, a VVB is unavoidably affected by atmospheric turbulence (AT) when it propagates through the free-space optical communication environment, which results in detection errors at the receiver. In this paper, we propose a VVB classification scheme to detect VVBs with continuously changing polarization states under AT, where a diffractive deep neural network (DDNN) is designed and trained to classify the intensity distribution of the input distorted VVBs, and the horizontal direction of polarization of the input distorted beam is adopted as the feature for the classification through the DDNN. The numerical simulations and experimental results demonstrate that the proposed scheme has high accuracy in classification tasks. The energy distribution percentage remains above 95% from weak to medium AT, and the classification accuracy can remain above 95% for various strengths of turbulence. It has a faster convergence and better accuracy than that based on a convolutional neural network.
Keywords:  vector vortex beam      diffractive deep neural network      classification      atmospheric turbulence  
Received:  25 June 2023      Revised:  26 September 2023      Accepted manuscript online:  09 October 2023
PACS:  42.30.Sy (Pattern recognition)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
  42.68.-w (Atmospheric and ocean optics)  
  84.35.+i (Neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62375140 and 62001249) and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No. M36055).
Corresponding Authors:  Shengmei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Yixiang Peng(彭怡翔), Bing Chen(陈兵), Le Wang(王乐), and Shengmei Zhao(赵生妹) Diffraction deep neural network-based classification for vector vortex beams 2024 Chin. Phys. B 33 034205

[1] Milione G, Nguyen T A, Leach J, Nolan D A and Alfano R R 2015 Opt. Lett. 40 4887
[2] Ndagano B, Nape I, Cox M A, Guzman C R and Forbes A 2018 J. Lightwave Technol. 36 292
[3] McLaren M, Konrad T and Forbes A 2015 Phys. Rev. A 92 23833
[4] Giordani T, Suprano A, Polino E, Acanfora F, Innocenti L, Ferraro A, Paternostro M, Spagnolo N and Sciarrino F 2020 Phys. Rev. Lett. 124 160401
[5] lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M and Ozcan A 2018 Science 361 1004
[6] Huang Z, Wang P P, Liu J, Xiong W J, He Y L, Xiao J N, Ye H P, Li Y, Chen S Q and Fan D Y 2021 Phys. Rev. Appl. 15 014037
[7] Zhao Q S, Hao S Q, Wang Y, Wang L and Xu C L 2019 Opt. Commun. 443 245
[8] Wang P P, Xiong W J, Huang Z B, He Y L, Liu J M, Ye H P, Xiao J N, Li Y, Fan D Y and Chen S Q 2021 IEEE J. Sel. Top. Quantum Electron. 28 1
[9] Huang Z, He Y L, Wang W N, Wang P P, Xiong W J, Wu H S, Liu J M, Ye H P, Li Y, Fan D Y and Chen S Q 2022 Opt. Express 30 5569
[10] Wang P P, Xiong W J, Huang Z B, He Y L, Xie Z Q, Liu J M, Ye H P, Li Y, Fan D Y and Chen S Q 2021 Photon. Res. 9 2116
[11] Zhan H C, Peng Y X, Chen B, Wang L, Wang W N and Zhao S M 2022 Opt. Express 30 23305
[12] Zhan H C, Chen B, Peng Y X, Wang L, Wang W N and Zhao S M 2023 Chin. Phys. B 32 044208
[13] Zhan H C, Wang L, Wang W N and Zhao S M 2023 J. Opt. Soc. Am. B 40 187
[14] Chen S Z, Zhou X X, Liu Y C, Ling X H, Luo H L and Wen S C 2014 Opt. Lett. 39 5274
[15] Zhao S M, Wang B, Gong L Y, Sheng Y B, Cheng W W, Dong X L and Zheng B Y 2013 J. Lightwave Technol. 31 2823
[16] Zhao S M, Leach J, Gong L Y, Ding J and Zheng B Y 2012 Opt. Express 20 452
[17] Jones R C 1941 J. Opt. Soc. Am. 31 488
[18] Rosales-Guzmán C, Ndagano B, Forbes A 2018 J. Opt. 20 123001
[19] Zhai Y W, Fu S Y, Zhang J Q, Liu X T, Zhou H and Gao C Q 2020 Opt. Express 28 7515
[20] Cheng W, Haus J W and Zhan Q W 2009 Opt. Express 17 17829
[21] Nape I, Singh K, Klug A, Buono W, Rosales-Guzman C, McWilliam A, Franke-Arnold S, Kritzinger A, Forbes P, Dudley A and Forbes A 2022 Nat. Photonics 16 538
[22] Cai Y J, Lin Q, Eyyuboğlu H T and Baykal Y 2008 Opt. Express 16 7665
[23] Zhan Q W 2009 Adv. Opt. Photon. 1 1
[24] Cox M A, Rosales-Guzmán C, Lavery M P J, Versfeld D J and Forbes A 2016 Opt. Express 24 18105
[25] Hearst M A, Dumais S T, Osuna E, Platt J and Scholkopf B 1998 IEEE Intell. Syst. Their Appl. 13 18
[26] Chapelle O, Haffner P and Vapnik V N 1999 IEEE Trans. Neural Netw. 10 1055
[27] Foody G M and Mathur A 2004 IEEE Trans. Geosci. Remote Sens. 42 1335
[28] Cervantes J, Garcia-Lamont F and Rodr\i guez-Mazahua L 2020 Neurocomputing 408 189
[1] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[2] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[3] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[4] Deep learning framework for time series classification based on multiple imaging and hybrid quantum neural networks
Jianshe Xie(谢建设) and Yumin Dong(董玉民). Chin. Phys. B, 2023, 32(12): 120302.
[5] Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
Sheng-Jie Ma(马圣杰), Shi-Long Xu(徐世龙), Xiao Dong(董骁), Xin-Yuan Zhang(张鑫源), You-Long Chen(陈友龙), and Yi-Hua Hu(胡以华). Chin. Phys. B, 2023, 32(10): 104208.
[6] Combination of density-clustering and supervised classification for event identification in single-molecule force spectroscopy data
Yongyi Yuan(袁泳怡), Jialun Liang(梁嘉伦), Chuang Tan(谭创), Xueying Yang(杨雪滢), Dongni Yang(杨东尼), and Jie Ma(马杰). Chin. Phys. B, 2023, 32(10): 108702.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[9] Individual identification using multi-metric of DTI in Alzheimer's disease and mild cognitive impairment
Ying-Teng Zhang(张应腾), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(8): 088702.
[10] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[11] An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods
Jing-jing Feng(冯静静), Wei Zhu(祝薇), Yuan Deng(邓元). Chin. Phys. B, 2018, 27(4): 047210.
[12] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[13] The materials data ecosystem: Materials data science and its role in data-driven materials discovery
Hai-Qing Yin(尹海清), Xue Jiang(姜雪), Guo-Quan Liu(刘国权), Sharon Elder, Bin Xu(徐斌), Qing-Jun Zheng(郑清军), Xuan-Hui Qu(曲选辉). Chin. Phys. B, 2018, 27(11): 118101.
[14] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
[15] A new method of calculating the orbital angular momentum spectra of Laguerre-Gaussian beams in channels with atmospheric turbulence
Xiao-zhou Cui(崔小舟), Xiao-li Yin(尹霄丽), Huan Chang(常欢), Zhi-chao Zhang(张志超), Yong-jun Wang(王拥军), Guo-hua Wu(吴国华). Chin. Phys. B, 2017, 26(11): 114207.
No Suggested Reading articles found!