Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 014202    DOI: 10.1088/1674-1056/acfdfd
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Young's double slit interference with vortex source

Qilin Duan(段琦琳)1,3,†, Pengfei Zhao(赵鹏飞)1,†, Yuhang Yin(殷玉杭)1, and Huanyang Chen(陈焕阳)1,2,‡
1 Institute of Electromagnetics and Acoustics and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China;
2 Jiujiang Research Institute of Xiamen University, Jiujiang 332000, China;
3 Department of Electrical and Computer Engineering, National University of Singapore, 117583, Singapore
Abstract  The fast and convenient demultiplex of optical vortex (OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens—Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge (TC) l>0 or l<0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young's doublet.
Keywords:  Young's double slit      vortex source      inteference patterns  
Received:  16 July 2023      Revised:  21 August 2023      Accepted manuscript online:  28 September 2023
PACS:  42.25.Hz (Interference)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0710100 and 2023YFA1407100), the National Natural Science Foundation of China (Grant Nos. 92050102 and 12374410), the Jiangxi Provincial Natural Science Foundation (Grant No. 20224ACB201005), the Fundamental Research Funds for the Central Universities (Grant Nos. 20720230102 and 20720220033), and China Scholarship Council (Grant No. 202206310009).
Corresponding Authors:  Huanyang Chen     E-mail:  kenyon@xmu.edu.cn

Cite this article: 

Qilin Duan(段琦琳), Pengfei Zhao(赵鹏飞), Yuhang Yin(殷玉杭), and Huanyang Chen(陈焕阳) Young's double slit interference with vortex source 2024 Chin. Phys. B 33 014202

[1] Young T 1802 Trans. R. Soc. Lond. 92 12
[2] Frabboni S, Gazzadi G C and Pozzi G 2007 Am. J. Phys. 75 1053
[3] Schmidt L Ph H, Schössler S, Afaneh F, Schöffler M, Stiebing K E, Schmidt-Böcking H and Dörner R 2008 Phys. Rev. Lett. 101 173202
[4] Ayuso D, Ordonez A F, Decleva P, Ivanov M and Smirnova O 2021 Nat. Commun. 12 3951
[5] Tirole R, Vezzoli S, Galiffi E, Robertson I, Maurice D, Tilmann B, Maier S A, Pendry J B and Sapienza R 2023 Nat. Phys. 19 999
[6] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[7] Chen R, Zhou H, Moretti M, Wang X and Li J 2020 IEEE Commun. Surv. Tutor. 22 840
[8] Liu B Y, Cui Y H and Li R L 2017 IEEE Anten. Wireless Propag. Lett. 16 744
[9] Hui X, Zheng S, Chen Y, Hu Y, Jin X, Chi H and Zhang X 2015 Sci. Rep. 5 10148
[10] Fang X, Ren H and Gu M 2020 Nat. Photon. 14 102
[11] Ren Y, Qiu S, Liu T and Liu Z L 2022 Nanophotonics 11 1127
[12] Gao C, Qi X, Liu Y, Xin J and Wang L 2011 Opt. Commun. 284 48
[13] Huang H, Ren Y, Yan Y, Ahmed N, Yue Y, Bozovich A, Erkmen B I, Birnbaum K, Dolinar S, Tur M and Willner A E 2013 Opt. Lett. 38 2348
[14] Chen X Y, Zhang A, Liu J M, Xie Z Q, Su M Y, He Y L, Zhou X X, Chen Y, Li Y, Chen S Q and Fan D Y 2019 J. Opt. 21 065603
[15] Hickmann J M, Fonseca E J S, Soares W C and Chávez-Cerda S 2010 Phys. Rev. Lett. 105 053904
[16] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999
[17] Emile O and Emile J 2014 Appl. Phys. B 117 487
[18] Qi J, Wang W, Li X, Wang X, Sun W, Liao J and Nie Y 2014 Opt. Eng. 53 044107
[19] Chen T, Lu X, Zeng J, Wang Z, Zhang H, Zhao C, Hoenders B J and Cai Y 2020 Opt. Express 28 38106
[20] Zhang H, Shen B F and Zhang L G 2019 Chin. Phys. B 28 014702
[21] Duan Q, Yin Y, Han L, Zhu S, Zhou Y, Chen H and Chen H 2023 Adv. Opt. Mater. 11 2202111
[22] Chen J, Wan C and Zhan Q W 2021 Adv. Photon. 3 064001
[23] Zheng S, Chen Y, Zhang Z, Jin X, Chi H, Zhang X and Chen Z N 2018 IEEE Trans. Anten. Propag. 66 1352
[24] Zhang Z, Zheng S, Jin X, Chi H and Zhang X 2016 IEEE Anten. Wireless Propag. Lett. 16 8
[25] Peatross J and Ware M 2010 Physics of light and optics:A free online textbook. In:Frontiers in Optics 2010/Laser Science XXVI (Optical Society of America) p. JWA64
[26] Teng S, Li F, Wang J and Zhang W 2013 J. Opt. Soc. Am. A 30 2273
[27] Berry M V 2013 J. Opt. 15 044006
[28] Fan X D, Zou Z and Zhang L 2019 Phys. Rev. Res. 1 032014
[29] Han L, Chen S and Chen H 2022 Phys. Rev. Lett. 128 204501
[1] A polarization sensitive interferometer: Delta interferometer
Chao-Qi Wei(卫超奇), Jian-Bin Liu(刘建彬), Yi-Fei Dong(董翼飞), Yu-Nong Sun(孙雨农), Yu Zhou(周宇), Huai-Bin Zheng(郑淮斌), Yan-Yan Liu(刘严严), Xiu-Sheng Yan(闫秀生), Fu-Li Li(李福利), and Zhuo Xu(徐卓). Chin. Phys. B, 2024, 33(3): 034203.
[2] Effective transmittance of Fabry—Perot cavity under non-parallel beam incidence
Yin-Sheng Lv(吕寅生), Pin-Hua Xie(谢品华), Jin Xu(徐晋), You-Tao Li(李友涛), and Hua-Rong Zhang(张华荣). Chin. Phys. B, 2024, 33(1): 014210.
[3] Active control of surface plasmon polaritons with phase change materials
Yuan-Zhen Qi(漆元臻), Qiao Jiang(蒋瞧), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(10): 104202.
[4] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[5] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[6] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[7] A 32-channel 100 GHz wavelength division multiplexer by interleaving two silicon arrayed waveguide gratings
Changjian Xie(解长健), Xihua Zou (邹喜华), Fang Zou(邹放), Lianshan Yan(闫连山), Wei Pan(潘炜), and Yong Zhang(张永). Chin. Phys. B, 2021, 30(12): 120703.
[8] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[9] Phase-shift interferometry measured transmission matrix of turbid medium: Three-step phase-shifting interference better than four-step one
Xi-Cheng Zhang(张熙程), Zuo-Gang Yang(杨佐刚), Long-Jie Fang(方龙杰), Jing-Lei Du(杜惊雷), Zhi-You Zhang(张志友), and Fu-Hua Gao(高福华). Chin. Phys. B, 2021, 30(10): 104202.
[10] Bound states in the continuum on perfect conducting reflection gratings
Jianfeng Huang(黄剑峰), Qianju Song(宋前举), Peng Hu(胡鹏), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2021, 30(8): 084211.
[11] Impact of the spatial coherence on self-interference digital holography
Xingbing Chao(潮兴兵), Yuan Gao(高源), Jianping Ding(丁剑平), and Hui-Tian Wang(王慧田). Chin. Phys. B, 2021, 30(8): 084212.
[12] Broad-band phase retrieval method for transient radial shearing interference using chirp Z transform technique
Fang Xue(薛芳), Ya-Xuan Duan(段亚轩), Xiao-Yi Chen(陈晓义), Ming Li(李铭), Suo-Chao Yuan(袁索超), and Zheng-Shang Da(达争尚). Chin. Phys. B, 2021, 30(8): 084209.
[13] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[14] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[15] Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy
Ya-Fei Zhang(张亚飞), Yu-Tao Feng(冯玉涛)†, Di Fu(傅頔), Peng-Chong Wang(王鹏冲), Jian Sun(孙剑), and Qing-Lan Bai(白清兰). Chin. Phys. B, 2020, 29(10): 104204.
No Suggested Reading articles found!