Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044702    DOI: 10.1088/1674-1056/ad181f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamic modeling of cavitation bubble clusters: Effects of evaporation, condensation, and bubble—bubble interaction

Long Xu(许龙), Xin-Rui Yao(姚昕锐), and Yang Shen(沈阳)
College of Science, China Jiliang University, Hangzhou 310018, China
Abstract  We present a dynamic model of cavitation bubbles in a cluster, in which the effects of evaporation, condensation, and bubble—bubble interactions are taken into consideration. Under different ultrasound conditions, we examine how the dynamics of cavitation bubbles are affected by several factors, such as the locations of the bubbles, the ambient radius, and the number of bubbles. Herein the variations of bubble radius, energy, temperature, pressure, and the quantity of vapor molecules are analyzed. Our findings reveal that bubble—bubble interactions can restrict the expansion of bubbles, reduce the exchange of energy among vapor molecules, and diminish the maximum internal temperature and pressure when bursting. The ambient radius of bubbles can influence the intensities of their oscillations, with clusters comprised of smaller bubbles creating optimal conditions for generating high-temperature and high-pressure regions. Moreover, an increase in the number of bubbles can further inhibit cavitation activities. The frequency, pressure and waveform of the driving wave can also exert a significant influence on cavitation activities, with rectangular waves enhancing and triangular waves weakening the cavitation of bubbles in the cluster. These results provide a theoretical basis for understanding the dynamics of cavitation bubbles in a bubble cluster, and the factors that affect their behaviors.
Keywords:  bubble dynamics      bubble—bubble interaction      mass exchange      ultrasound waveform  
Received:  24 October 2023      Revised:  14 December 2023      Accepted manuscript online:  22 December 2023
PACS:  47.55.dd (Bubble dynamics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074354).
Corresponding Authors:  Long Xu     E-mail:  xulong@cjlu.edu.cn

Cite this article: 

Long Xu(许龙), Xin-Rui Yao(姚昕锐), and Yang Shen(沈阳) Dynamic modeling of cavitation bubble clusters: Effects of evaporation, condensation, and bubble—bubble interaction 2024 Chin. Phys. B 33 044702

[1] Zhang X M, Li F, Wang C H, Hu J, Mo R Y, Shen Z Z, Guo J Z and Lin S Y 2023 Chin. Phys. B 32 064303
[2] Li M, Manica R, Xiang B and Liu Q 2021 Chem. Eng. Sci. 246 116997
[3] Ma X, Huang B, Zhao X, Wang Y, Chang Q, Qiu S, Fu X and Wang G 2018 Ultrason. Sonochem. 43 80
[4] Liang J F, Xiong D F, An Y and Chen W Z 2022 Chin. Phys. B 31 117802
[5] Pflieger R, Nikitenko S I and Ashokkumar M 2019 Ultrason. Sonochem. 59 104753
[6] Theerthagiri J, Madhavan J, Lee S J, Choi M Y, Ashokkumar M and Pollet B G 2020 Ultrason. Sonochem. 63 104960
[7] Hu J W, Wang L M, Qian S Y, Liu W Y, Liu Y T and Lei W R 2019 Chin. Phys. B 28 114301
[8] Bhangu S K, Bocchinfuso G, Ashokkumar M and Cavalieri F 2020 Nanoscale Horiz. 5 553
[9] Shanei A,Akbari-Zadeh H, Attaran N, Salamat M R and Baradaran-Ghahfarokhi M 2020 Ultrasonics 102 106061
[10] Plesset M S 1949 J. Appl. Mech. 16 277
[11] Shen Y, Yasui K, Zhu T and Ashokkumar M 2017 Phys. Chem. Chem. Phys. 19 20635
[12] Shen Y, Pflieger R, Chen W Z and Ashokkumar M 2023 Utrason. Somochem. 93 106307
[13] Poritsky H and Horvay G 1952 J. Appl. Mech. 19 229
[14] Keller J B and Miksis M J 1980 J. Acoust. Soc. Am. 68 628
[15] Yasui K 1995 J. Acoust. Soc. Am. 98 2772
[16] Lu Y, Ge Z, Li X, Shen D, Kang Y and Chen J 2009 J. Chin. U. Min. Technol. 38 582
[17] Gao X, Chen W, W. Huang, Xu J, Xu X, Liu Y and Liang Y 2009 Chinese Sci. Bull. 54 408
[18] Cogne C, Labouret S, Peczalski R, Louisnard O, Baillon F and Espitalier F 2016 Ultrason. Sonochem. 29 447
[19] Liao J, Tan J, Peng L and Xue H 2023 Ultrason. Sonochem. 100 106614
[20] Suo D, Govind B, Zhang S and Jing Y 2018 Ultrason. Sonochem. 41 419
[21] Wang Y, Chen D and Wu P 2023 Ultrason. Sonochem. 99 106585
[22] Mettin R, Akhatov I, Parlitz U, Ohl C and Lauterborn W 1977 Phys. Rev. E 56 2924
[23] Doinikov A A 2021 Phys. Rev. E 64 026301
[24] Zou Q, Lei S, Zhang Y and Dui Q 2023 Chin. Phys. B 32 014302
[25] Pelekasis N A, Gaki A, Doinikov A and Tsamopoulos J A 2004 J. Fluid Mech. 500 313
[26] Jiao J, He Y, Kentish S E, Ashokkumar M, Manasseh R and Lee J 2015 Ultrasonics 58 35
[27] Shen Y, Zhang L, Wu Y and Chen W 2021 Ultrason. Sonochem. 73 105535
[28] Qin D, Yang Q, Lei S, Fu J, Ji X and Wang X 2023 Ultrason. Sonochem. 99 106586
[29] Zou Q, Zhong X, Zhang B, Gao A, Wang X, Li Z and Qin D 2023 Ultrasonics 134 107809
[30] An Y 2011 Phys. Rev. E 83 066313
[31] Yasui K 1996 J. Phys. Soc. Jpn. 65 2830
[32] Yasui K 1997 Phys. Rev. E 56 6750
[33] Chen W, Chen X, Lu M, Miao G and Wei R 2002 J. Acoust. Soc. Am. 111 2632
[34] Shen Y, Zhu T, You M, MEI B, Han J, Xie Y, Li X and Yasui K 2015 J. Chem. Eng. Chin. U. 04 809185
[35] Kaouther K and Oualid H 2018 Ultrason. Sonochem. 42 508
[36] Wu X and Liang J 2021 Acta Phys. Sin. 70 184301 (in Chinese)
[1] Bubble translation driven by pulsation in a double-bubble system
Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英). Chin. Phys. B, 2020, 29(3): 034303.
[2] Bubble nonlinear dynamics and stimulated scattering process
Jie Shi(时洁), De-Sen Yang(杨德森), Sheng-Guo Shi(时胜国), Bo Hu(胡博), Hao-Yang Zhang(张昊阳), Shi-Yong Hu(胡诗涌). Chin. Phys. B, 2016, 25(2): 024304.
[3] Effect of supercritical water shell on cavitation bubble dynamics
Shao Wei-Hang (邵纬航), Chen Wei-Zhong (陈伟中). Chin. Phys. B, 2015, 24(5): 054701.
[4] Quantitative calculation of reaction performance in sonochemical reactor by bubble dynamics
Xu Zheng (徐峥), Yasuda Keiji (安田启司), Liu Xiao-Jun (刘晓峻). Chin. Phys. B, 2015, 24(10): 104301.
No Suggested Reading articles found!