Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 126202    DOI: 10.1088/1674-1056/acfd1a
RAPID COMMUNICATION Prev   Next  

Chair-like N66- in AlN3 with high-energy density

Shi-Tai Guo(郭世泰)1,2, Zhen-Zhen Xu(徐真真)1, Yan-Lei Geng(耿延雷)1, Qi Rui(芮琦)2, Dian-Chen Du(杜殿臣)2, Jian-Fu Li(李建福)1,†, and Xiao-Li Wang(王晓丽)2,‡
1 School of Physics and Electronic Information, Yantai University, Yantai 264005, China;
2 School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China
Abstract  The search for stable novel polynitrogen clusters has garnered significant attention in the field of energetic materials due to their potential applications as high-energy-density materials. In this study, a chair-like N66- ring with N-N single bonds in the AlN3 compound is theoretically predicted through first-principles calculations in conjunction with an unbiased structure searching method. The predicted AlN3 phase exhibits high kinetic and thermodynamic stability, along with a high energy density of 5.04 kJ/g relative to AlN and N2 gas. Additionally, its detonation velocity and pressure are estimated to reach 12.93 km/s and 1009.63 kbar, respectively. These values are greater than those of TNT and HMX, positioning it as a promising candidate for high-energy-density materials in the field of explosive combustion. The analysis of electronic properties and the related chemical bonding patterns indicates that the compounds are stabilized by both Coulomb interactions and covalent bonds. More importantly, the calculated formation of enthalpy indicates that the N66- anions within AlN3 can be synthesized by compressing AlN and N2 at a moderate pressure (46 GPa). These findings present a viable approach for synthesizing and stabilizing the all-nitrogen N66- anions.
Keywords:  high pressure      aluminum nitride      electronic property      high-energy-density materials  
Received:  26 July 2023      Revised:  14 September 2023      Accepted manuscript online:  26 September 2023
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  82.40.Fp (Shock wave initiated reactions, high-pressure chemistry)  
  91.60.Gf (High-pressure behavior)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11974154), the Taishan Scholars Special Funding for Construction Projects, and the Natural Science Foundation of Shandong Province (Grant No.ZR2022MA004).
Corresponding Authors:  Jian-Fu Li, Xiao-Li Wang     E-mail:  jianfuli@ytu.edu.cn;xlwang@ytu.edu.cn

Cite this article: 

Shi-Tai Guo(郭世泰), Zhen-Zhen Xu(徐真真), Yan-Lei Geng(耿延雷), Qi Rui(芮琦), Dian-Chen Du(杜殿臣), Jian-Fu Li(李建福), and Xiao-Li Wang(王晓丽) Chair-like N66- in AlN3 with high-energy density 2023 Chin. Phys. B 32 126202

[1] Talawar M B, Sivabalan R, Asthana S N and Singh H 2005 Combust. Explos. Shock Waves 41 264
[2] Zhang S T, Zhao Z Y, Liu L L and Yang G C 2017 J. Power Sources 365 155
[3] Li X Y, Zhang S H, Zhang C Z and Wang Q 2018 Nanoscale 10 949
[4] Li J F, Jiang Q W, Zhu Z Q, Zhu H Y and Wang X L 2018 Europhys. Lett. 124 67004
[5] Lin J N, Zhu Z Q, Jiang Q W, Guo S T, Li J F, Zhu H Y and Wang X L 2019 AIP Adv. 9 055116
[6] Lin J N, Wang F X, Rui Q, Li J F, Wang Q L and Wang X L 2022 Matter Radiat. Extrem. 7 038401
[7] Wei S L, Li D, Liu Z, Li X, Tian F B, Duan D F, Liu B B and Cui T 2017 Phys. Chem. Chem. Phys. 19 9246
[8] Xia K, Zheng X X, Yuan J N, Liu C, Gao H, Wu Q and Sun J 2019 J. Phys. Chem. C 123 10205
[9] Liu Z, Li D, Wei S L, Wang W J, Tian F B, Bao K, Duan D F, Yu H Y, Liu B B and Cui T 2017 Inorg. Chem. 56 7494
[10] Liu Z, Li D, Liu Y, Cui T, Tian F B and Duan D F 2019 Phys. Chem. Chem. Phys. 21 12029
[11] Du H F, Ge Y F, Zhu J L, Guo W and Yao Y G 2021 Phys. Chem. Chem. Phys. 23 12350
[12] Li D, Tian F B, Lv Y Z, Wei S L, Duan D F, Liu B B and Cui T 2017 J. Phys. Chem. C 121 1515
[13] Bykov M, Bykova E, Aprilis G, Glazyrin K, Koemets E, Chuvashova I, Kupenko I, McCammon C, Mezouar M, Prakapenka V, Liermann H P, Tasnádi F, Ponomareva A V, Abrikosov I A, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 2756
[14] Jiao F B, Zhang C Y and Xie W 2020 J. Phys. Chem. C 124 19953 14a Sun C L, Guo W and Yao Y G 2022 Chin. Phys. Lett. 39 087101
[15] Li J F, Sun L, Wang X L, Zhu H Y and Miao M S 2018 J. Phys. Chem. C 122 22339
[16] Yi W C, Zhao K F, Wang Z X, Yang B C, Liu Z and Liu X B 2020 ACS Omega 5 6221
[17] Liu Z, Li D, Tian F B, Duan D F, Li H D and Cui T 2020 Inorg. Chem. 59 8002
[18] Shi X H, Yao Z and Liu B B 2020 J. Phys. Chem. C 124 4044
[19] Xin S S, Du D C, Wang F X, Rui Q, Wang Q L, Zhao X L, Li J F, Yang D J, Zhu H Y and Wang X L 2021 Phys. B 617 413139
[20] Wang W J, Wang H, Liu Y, Li D, Tian F B, Duan D F, Yu H Y and Cui T 2019 Inorg. Chem. 58 2397
[21] Guo S T, Lin J N, Li J F, Wang Q L, Wu H, Zhu H Y and Wang X L 2019 Comput. Mater. Sci. 169 109147
[22] Xing W D, Wei Z J, Yu R and Meng F Y 2019 J. Mater. Sci. Technol. 35 2297
[23] Salke N P, Xia K, Fu S Y, Zhang Y J, Greenberg E, Prakapenka V B, Liu J, Sun J and Lin J F 2021 Phys. Rev. Lett. 126 065702 23a Miao J Y, Lu Z S, Peng F and Lu C 2021 Chin. Phys. Lett. 38 066201 23b Liu L L, Zhang S T and Zhang H J 2022 Chin. Phys. Lett. 39 056102
[24] Peng F, Yao Y S, Liu H Y and Ma Y M 2015 J. Phys. Chem. Lett. 6 2363
[25] Kulkarni A, Schön J C, Doll K and Jansen M 2013 Chem. - An Asian J. 8 743
[26] Vij A, Wilson W W, Vij V, Tham F S, Sheehy J A and Christe K O 2001 J. Am. Chem. Soc. 123 6308
[27] Zhang C, Sun C G, Hu B C, Yu C M and Lu M 2017 Science 355 374
[28] Xu Y G, Wang Q, Shen C, Lin Q H, Wang P C and Lu M 2017 Nature 549 78
[29] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[30] Li Y W, Feng X L, Liu H Y, Hao J, Redfern S A T, Lei W W, Liu D and Ma Y 2018 Nat. Commun. 9 722 30a Chen G, Niu C P, Xia W M, Zhang J, Zeng Z and Wang X L 2023 Chin. Phys. Lett. 40 086102
[31] Prasad D L V K, Ashcroft N W and Hoffmann R 2013 J. Phys. Chem. C 117 20838
[32] Zhu S S, Peng F, Liu H Y, Majumdar A, Gao T and Yao Y S 2016 Inorg. Chem. 55 7550
[33] Huang B W and Frapper G 2018 Chem. Mater. 30 7623
[34] Xia K, Gao H, Liu C, Yuan J N, Sun J, Wang H T and Xing D Y 2018 Sci. Bull. 63 817
[35] Liu Z, Li D, Zhuang Q, Tian F B, Duan D F, Li F F and Cui T 2020 Commun. Chem. 3 42
[36] Liu L L, Wang D H, Zhang S Z and Zhang H J 2021 J. Mater. Chem. A 9 16751
[37] Liu Z, Li D, Wei S L, Liu Y, Tian F B, Duan D F and Cui T 2019 Phys. Lett. A 383 125859
[38] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[39] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[40] Peng F, Song X Q, Liu C, Li Q, Miao M S, Chen C F and Ma Y M 2020 Nat. Commun. 11 5227
[41] Lu W C, Liu S Y, Liu G T, Hao K, Zhou M, Gao P Y, Wang H B, Lv J, Gou H Y, Yang G C, Wang Y C and Ma Y M 2022 Phys. Rev. Lett. 128 106001
[42] Liu Y, Wang R, Wang Z G, Li D and Cui T 2022 Nat. Commun. 13 412
[43] Lin J Y, Du X, Rahm M, Yu H, Xu H Y and Yang G C 2020 Angew. Chem. Int. Ed. 59 9155
[44] Shi J M, Cui W W, Hao J, Xu M L, Wang X L and Li Y W 2020 Nat. Commun. 11 3164
[45] Huang P H, Liu H Y, Lv J, Li Q, Long C H, Wang Y C, Chen C F, Hemley R J and Ma Y M 2020 Proc. Natl. Acad. Sci. USA 117 5638
[46] Li X, Huang X L, Duan D F, Pickard C J, Zhou D, Xie H, Zhuang Q, Huang Y P, Zhou Q, Liu B B and Cui T 2019 Nat. Commun. 10 3461
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[49] Blöchl P E 1994 Phys. Rev. B 50 17953
[50] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[51] Dabhi S D and Jha P K 2015 Polymer. 81 45
[52] Hoover W G 1985 Phys. Rev. A 31 1695
[53] Nosé S 1984 J. Chem. Phys. 81 511
[54] Le Page Y and Saxe P 2002 Phys. Rev. B 65 104104
[55] Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
[56] Galeev T R, Dunnington B D, Schmidt J R and Boldyrev A I 2013 Phys. Chem. Chem. Phys. 15 5022
[57] Frisch M J, Trucks G W, and Schlegel H B 2009 Gaussian 09. Gaussian Inc, Wallingford CT
[58] Tang W, Sanville E and Henkelman G 2009 J. Phys. Condens. Matter 21 084204
[59] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[60] Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L and Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001
[61] Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L and Mao H K 2020 Sci. Adv. 6 eaba9206
[62] Lin C L, Liu X Q, Yong X, Tse J S, Smith J S, English N J, Wang B H, Li M, Yang W G and Mao H K 2020 Proc. Natl. Acad. Sci. USA 117 15437
[63] Lin C L, Liu X Q, Yang D L, Li X D, Smith J S, Wang B H, Dong H N, Li S R, Yang W G and Tse J S 2020 Phys. Rev. Lett. 125 155702
[64] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X and Meng J 2007 Phys. Rev. B 76 054115
[65] Pugh S F 1954 Philos. Mag. 45 823
[66] Tian F B, Wang J H, He Z, Ma Y M, Wang L C, Cui T, Chen C B, Liu B B and Zou G T 2008 Phys. Rev. B 78 235431
[67] Kaner R B, Gilman J J and Tolbert S H 2005 Science 308 1268
[68] Greaves G N, Greer A L, Lakes R S and Rouxel T 2011 Nat. Mater. 10 823
[69] Maintz S, Deringer V L, Tchougréeff A L and Dronskowski R 2016 J. Comput. Chem. 37 1030
[70] Morino Y, Iijima T and Murata Y 1960 Bull. Chem. Soc. Jpn. 33 46
[71] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[72] Cordero B, Gómez V, Platero-Prats A E, Revés M, Echeverría J, Cremades E, Barragán F and Alvarez S 2008 Dalton. Trans. 21 2832
[73] Hu Y, Huang P, Guo L, Wang X H and Zhang C L 2006 Phys. Lett. A 359 728
[74] Kamlet M J and Jacobs S J 1968 J. Chem. Phys. 48 23
[75] Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43
[76] Zhang J, Oganov A R, Li X F and Niu H Y 2017 Phys. Rev. B 95 020103
[77] Xia Q, Xia H and Ruoff A L 1993 J. Appl. Phys. 73 8198
[78] Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702
[79] Geith J, Klapötke T M, Weigand J and Holl G 2004 Propellants, Explos. Pyrotech. 29 3
[80] Wang Y, Liu Y L, Song S W, Yang Z J, Qi X J, Wang K C, Zhang Q H and Tian Y 2018 Nat. Commun. 9 2444
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[4] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[5] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[6] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[7] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[8] Structural stability and ion migration of Li2MnO3 cathode material under high pressures
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐). Chin. Phys. B, 2023, 32(12): 126101.
[9] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[10] Optimization of thermoelectric properties in elemental tellurium via high pressure
Dongyao Zhao(赵东尧), Manman Yang(杨曼曼), Hairui Sun(孙海瑞), Xin Chen(陈欣), Yongsheng Zhang(张永胜), and Xiaobing Liu(刘晓兵). Chin. Phys. B, 2023, 32(10): 107305.
[11] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[12] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!