Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067802    DOI: 10.1088/1674-1056/acc2b1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy

Yunfeng Wang(王云峰)1,2, Shujuan Xu(许淑娟)1, Jin Yang(杨金)1, and Fuhai Su(苏付海)1,†
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China(USTC), Hefei 230026, China
Abstract  Graphene hosts intriguing photocarrier dynamics such as negative transient terahertz (THz) photoconductivity, high electron temperature, benefiting from the unique linear Dirac dispersion. In this work, the pressure effects of photocarrier dynamics of graphene have been investigated using in situ time-resolved THz spectroscopy in combination with diamond anvil cell exceeding 9 GPa. We find that the negative THz conductivity maintains in our studied pressure range both for monolayer and bilayer graphene. In particular, the amplitude of THz photoconductivity in monolayer graphene manifests an extraordinary dropping with pressure, compared with that from the counterparts such as bulk silicon and bilayer graphene. Concomitantly, the time constant is reduced with increasing pressure, highlighting the pressure-induced hot carrier cooling. The pressure dependence of photocarrier dynamics in monolayer graphene is likely related with the enhancement of the interfacial coupling between diamond surface and sample, allowing for the activity of new electron-phonon scattering. Our work is expected to provide an impetus for the studies of high-pressure THz spectroscopy of two-dimensional materials.
Keywords:  terahertz      photocarrier dynamics      graphene      high pressure  
Received:  28 January 2023      Revised:  25 February 2023      Accepted manuscript online:  09 March 2023
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  68.65.Pq (Graphene films)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174398, 12004387, 51727806, 51672279, 11874361, and 12204484), the Innovation Program of Chinese Academy of Sciences (Grant No. CXJJ-19-B08), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021446), the HFIPS Director’s Fund of Chinese Academy of Sciences (Grant Nos. 2021YZGH03 and YZJJKX202202), and China Postdoctoral Science Foundation (Grant No. 2021M703255).
Corresponding Authors:  Fuhai Su     E-mail:  fhsu@issp.ac.cn

Cite this article: 

Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海) Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy 2023 Chin. Phys. B 32 067802

[1] Gatamov R, Baydin A, Krzyzanowska H and Tolk N2020 Mater. Res. Express 7 095601
[2] George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G2008 Nano Lett. 8 4248
[3] Sabbah A J and Riffe D M2002 Phys. Rev. B 66 165217
[4] Fann W S, Storz R, Tom H W K and Bokor J1992 Phys. Rev. B 46 13592
[5] Allen P B1987 Phys. Rev. Lett. 59 1460
[6] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P2011 Science 334 648
[7] Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F and Koppens F H L2015 Nat. Nanotechnol. 10 437
[8] Ross R T and Nozik A J1982 J. Appl. Phys. 53 3813
[9] Nelson C A, Monahan N R and Zhu X Y2013 Energy Environ. Sci. 6 3508
[10] Massicotte M, Soavi G, Principi A and Tielrooij K J2021 Nanoscale 13 8376
[11] Sun B Y, Zhou Y and Wu M W2012 Phys. Rev. B 85 125413
[12] Betz A C, Vialla F, Brunel D, Voisin C, Picher M, Cavanna A, Madouri A, Féve G, Berroir J M, Plaçais B and Pallecchi E2012 Phys. Rev. Lett. 109 056805
[13] Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer W A, Schneider H and Helm M2011 Phys. Rev. Lett. 107 237401
[14] Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A and Elsaesser T2011 Phys. Rev. B 83 153410
[15] Butscher S, Milde F, Hirtschulz M, Malić E and Knorr A2007 Appl. Phys. Lett. 91 203103
[16] Pogna E A A, Jia X, Principi A, Block A, Banszerus L, Zhang J, Liu X, Sohier T, Forti S, Soundarapandian K, Terrés B, Mehew J D, Trovatello C, Coletti C, Koppens F H L, Bonn M, Wang H I, van Hulst N, Verstraete M J, Peng H, Liu Z, Stampfer C, Cerullo G and Tielrooij K J2021 ACS Nano 15 11285
[17] Fu S, du Fossé I, Jia X, Xu J, Yu X, Zhang H, Zheng W, Krasel S, Chen Z, Wang Z M, Tielrooij K J, Bonn M, Houtepen A J and Wang H I2021 Sci. Adv. 7 eabd9061
[18] Zheng Q, Saidi W A, Xie Y, Lan Z, Prezhdo O V, Petek H and Zhao J2017 Nano Lett. 17 6435
[19] Virga A, Ferrante C, Batignani G, De Fazio D, Nunn A D G, Ferrari A C, Cerullo G and Scopigno T2019 Nat. Commun. 10 3658
[20] Lai J, Liu X, Ma J, Wang Q, Zhang K, Ren X, Liu Y, Gu Q, Zhuo X, Lu W, Wu Y, Li Y, Feng J, Zhou S, Chen J H and Sun D2018 Adv. Mater. 30 1707152
[21] Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J, Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M and Turchinovich D2018 Nature 561 507
[22] Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, García de Abajo F J and Biegert J2018 Nat. Commun. 9 1018
[23] Huang L, Hartland G V, Chu L Q, Luxmi, Feenstra R M, Lian C, Tahy K and Xing H2010 Nano Lett. 10 1308
[24] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L2013 Nat. Phys. 9 248
[25] Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe J E, Berger C, de Heer W A, First P N and Norris T B2012 New J. Phys. 14 105012
[26] Li G, Amer N, Hafez H A, Huang S, Turchinovich D, Mochalin V N, Hegmann F A and Titova L V2020 Nano Lett. 20 636
[27] Titova L V, Cocker T L, Cooke D G, Wang X, Meldrum A and Hegmann F A2011 Phys. Rev. B 83 085403
[28] Beard M C, Turner G M and Schmuttenmaer C A2000 Phys. Rev. B 62 15764
[29] Paingad V C, Kunc J, Rejhon M, Rychetský I, Mohelský I, Orlita M and Kužel P2021 Adv. Funct. Mater. 31 2105763
[30] Jnawali G, Rao Y, Yan H and Heinz T F2013 Nano Lett. 13 524
[31] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L2013 Nat. Phys. 9 248
[32] Tomadin A, Hornett S M, Wang H I, Alexeev E M, Candini A, Coletti C, Turchinovich D, Kläui M, Bonn M, Koppens F H L, Hendry E, Polini M and Tielrooij K J2018 Sci. Adv. 4 eaar5313
[33] Mao H K, Chen X J, Ding Y, Li B and Wang L2018 Rev. Mod. Phys. 90 015007
[34] Zhang L, Tang Y, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y, Li Q and Lu Y2020 Adv. Sci. 7 2002697
[35] Barboza A P M, Guimaraes M H D, Massote D V P, Campos L C, Barbosa Neto N M, Cancado L G, Lacerda R G, Chacham H, Mazzoni M S C and Neves B R A2011 Adv. Mater. 23 3014
[36] Xu F, Wu M Y, Safron N S, Roy S S, Jacobberger R M, Bindl D J, Seo J H, Chang T H, Ma Z and Arnold M S2014 Nano Lett. 14 682
[37] Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H and Chen B2019 Proc. Natl. Acad. Sci. USA 116 9186
[38] Tao Z, Du J, Qi Z, Ni K, Jiang S and Zhu Y2020 Appl. Phys. Lett. 116 133101
[39] Pietryga J M, Zhuravlev K K, Whitehead M, Klimov V I and Schaller R D2008 Phys. Rev. Lett. 101 217401
[40] Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X, Zhou J, Hsieh W P, Singh A K, Lin J F and Wang Y2019 Phys. Rev. Lett. 122 155901
[41] Ni K, Du J, Yang J, Xu S, Cong X, Shu N, Zhang K, Wang A, Wang F, Ge L, Zhao J, Qu Y, Novoselov K S, Tan P, Su F and Zhu Y2021 Phys. Rev. Lett. 126 027402
[42] Zhang K, Xie J, Yang J, Jiang H, Zhang S, Zeng Z, Chen X, Wang T and Su F2022 Phys. Rev. B 105 195109
[43] Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Riccó M, Perucchi A, Di Pietro P and Cavalleri A2018 Nat. Phys. 14 837
[44] Fülöp J A, Pálfalvi L, Almási G and Hebling J2010 Opt. Express 18 12311
[45] Hirori H, Doi A, Blanchard F and Tanaka K2011 Appl. Phys. Lett. 98 091106
[46] Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V and Otsuji T2012 Phys. Rev. B 85 035443
[47] Yamashita M and Otani C2021 Phys. Rev. Res. 3 013150
[48] Xu S, Huang D, Liu Z, Zhang K, Jiang H, Gou H, Zeng Z, Wang T and Su F2021 Opt. Express 29 14058
[49] Zhang K, Xie J, Yang J, Jiang H, Zhang S, Zeng Z, Chen X, Wang T and Su F2022 Phys. Rev. B 105 195109
[50] Gao B, Hartland G, Fang T, Kelly M, Jena D, Xing H Grace and Huang L2011 Nano Lett. 11 3184
[51] Betz A C, Vialla F, Brunel D, Voisin C, Picher M, Cavanna A, Madouri A, Féve G, Berroir J M, Plaçais B and Pallecchi E2012 Phys. Rev. Lett. 109 056805
[52] Song J C W, Reizer M Y and Levitov L S2012 Phys. Rev. Lett. 109 106602
[53] Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer W A, Schneider H and Helm M2011 Phys. Rev. Lett. 107 237401
[54] Cao H, Aivazian G, Fei Z, Ross J, Cobden D H and Xu X2016 Nat. Phys. 12 236
[55] Dawlaty J M, Shivaraman S and Chandrashekhar M 2008 Appl. Phys. Lett. 93 131905
[56] Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G and Polini M2013 Nat. Commun. 4 1987
[57] Moody G, Kavir Dass C, Hao K, Chen C H, Li L J, Singh A, Tran K, Clark G, Xu X, Berghäuser G, Malic E, Knorr A and Li X2015 Nat. Commun. 6 8315
[58] Wu Y, Yin X, Hasaien J, Ding Y and Zhao J2020 Chin. Phys. Lett. 37 047801
[1] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[2] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[3] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
[4] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[5] Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
K Gopal, A P Singh, and S Divya. Chin. Phys. B, 2023, 32(6): 065202.
[6] Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer-bilayer graphene
Siyu Li(李思宇), Zhengwen Wang(王政文), Yucheng Xue(薛禹承), Lu Cao(曹路), Kenji Watanabe, Takashi Taniguchi, Hongjun Gao(高鸿钧), and Jinhai Mao(毛金海). Chin. Phys. B, 2023, 32(6): 067304.
[7] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[8] Morphological features and nanostructures generated during SiC graphitization process
Wen-Xia Kong(孔雯霞), Yong Duan(端勇), Jin-Zhe Zhang(章晋哲),Jian-Xin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 068103.
[9] Tunable correlation in twisted monolayer-trilayer graphene
Dongdong Ding(丁冬冬), Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(6): 067204.
[10] Long-range adsorbate interactions mediated by two-dimensional Dirac fermions
Xiaohui Wang(王晓慧), Zhen-Guo Fu(付振国), Zhigang Wang(王志刚), Feng Chi(迟锋), and Ping Zhang(张平). Chin. Phys. B, 2023, 32(5): 057201.
[11] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[12] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[13] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[14] Integrated system of traditional THz time-domain spectroscopy and asynchronous optical sampling
Jing Ding(丁晶), Qing-Hao Meng(孟庆昊), Yan Shen(沈妍), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), Hai-Lin Cui(崔海林), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2023, 32(4): 048702.
[15] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
No Suggested Reading articles found!