CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy |
Yunfeng Wang(王云峰)1,2, Shujuan Xu(许淑娟)1, Jin Yang(杨金)1, and Fuhai Su(苏付海)1,† |
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China(USTC), Hefei 230026, China |
|
|
Abstract Graphene hosts intriguing photocarrier dynamics such as negative transient terahertz (THz) photoconductivity, high electron temperature, benefiting from the unique linear Dirac dispersion. In this work, the pressure effects of photocarrier dynamics of graphene have been investigated using in situ time-resolved THz spectroscopy in combination with diamond anvil cell exceeding 9 GPa. We find that the negative THz conductivity maintains in our studied pressure range both for monolayer and bilayer graphene. In particular, the amplitude of THz photoconductivity in monolayer graphene manifests an extraordinary dropping with pressure, compared with that from the counterparts such as bulk silicon and bilayer graphene. Concomitantly, the time constant is reduced with increasing pressure, highlighting the pressure-induced hot carrier cooling. The pressure dependence of photocarrier dynamics in monolayer graphene is likely related with the enhancement of the interfacial coupling between diamond surface and sample, allowing for the activity of new electron-phonon scattering. Our work is expected to provide an impetus for the studies of high-pressure THz spectroscopy of two-dimensional materials.
|
Received: 28 January 2023
Revised: 25 February 2023
Accepted manuscript online: 09 March 2023
|
PACS:
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
68.65.Pq
|
(Graphene films)
|
|
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174398, 12004387, 51727806, 51672279, 11874361, and 12204484), the Innovation Program of Chinese Academy of Sciences (Grant No. CXJJ-19-B08), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2021446), the HFIPS Director’s Fund of Chinese Academy of Sciences (Grant Nos. 2021YZGH03 and YZJJKX202202), and China Postdoctoral Science Foundation (Grant No. 2021M703255). |
Corresponding Authors:
Fuhai Su
E-mail: fhsu@issp.ac.cn
|
Cite this article:
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海) Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy 2023 Chin. Phys. B 32 067802
|
[1] Gatamov R, Baydin A, Krzyzanowska H and Tolk N2020 Mater. Res. Express 7 095601 [2] George P A, Strait J, Dawlaty J, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G2008 Nano Lett. 8 4248 [3] Sabbah A J and Riffe D M2002 Phys. Rev. B 66 165217 [4] Fann W S, Storz R, Tom H W K and Bokor J1992 Phys. Rev. B 46 13592 [5] Allen P B1987 Phys. Rev. Lett. 59 1460 [6] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P2011 Science 334 648 [7] Tielrooij K J, Piatkowski L, Massicotte M, Woessner A, Ma Q, Lee Y, Myhro K S, Lau C N, Jarillo-Herrero P, van Hulst N F and Koppens F H L2015 Nat. Nanotechnol. 10 437 [8] Ross R T and Nozik A J1982 J. Appl. Phys. 53 3813 [9] Nelson C A, Monahan N R and Zhu X Y2013 Energy Environ. Sci. 6 3508 [10] Massicotte M, Soavi G, Principi A and Tielrooij K J2021 Nanoscale 13 8376 [11] Sun B Y, Zhou Y and Wu M W2012 Phys. Rev. B 85 125413 [12] Betz A C, Vialla F, Brunel D, Voisin C, Picher M, Cavanna A, Madouri A, Féve G, Berroir J M, Plaçais B and Pallecchi E2012 Phys. Rev. Lett. 109 056805 [13] Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer W A, Schneider H and Helm M2011 Phys. Rev. Lett. 107 237401 [14] Breusing M, Kuehn S, Winzer T, Malić E, Milde F, Severin N, Rabe J P, Ropers C, Knorr A and Elsaesser T2011 Phys. Rev. B 83 153410 [15] Butscher S, Milde F, Hirtschulz M, Malić E and Knorr A2007 Appl. Phys. Lett. 91 203103 [16] Pogna E A A, Jia X, Principi A, Block A, Banszerus L, Zhang J, Liu X, Sohier T, Forti S, Soundarapandian K, Terrés B, Mehew J D, Trovatello C, Coletti C, Koppens F H L, Bonn M, Wang H I, van Hulst N, Verstraete M J, Peng H, Liu Z, Stampfer C, Cerullo G and Tielrooij K J2021 ACS Nano 15 11285 [17] Fu S, du Fossé I, Jia X, Xu J, Yu X, Zhang H, Zheng W, Krasel S, Chen Z, Wang Z M, Tielrooij K J, Bonn M, Houtepen A J and Wang H I2021 Sci. Adv. 7 eabd9061 [18] Zheng Q, Saidi W A, Xie Y, Lan Z, Prezhdo O V, Petek H and Zhao J2017 Nano Lett. 17 6435 [19] Virga A, Ferrante C, Batignani G, De Fazio D, Nunn A D G, Ferrari A C, Cerullo G and Scopigno T2019 Nat. Commun. 10 3658 [20] Lai J, Liu X, Ma J, Wang Q, Zhang K, Ren X, Liu Y, Gu Q, Zhuo X, Lu W, Wu Y, Li Y, Feng J, Zhou S, Chen J H and Sun D2018 Adv. Mater. 30 1707152 [21] Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen M, Germanskiy S, Lehnert U, Teichert J, Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M and Turchinovich D2018 Nature 561 507 [22] Baudisch M, Marini A, Cox J D, Zhu T, Silva F, Teichmann S, Massicotte M, Koppens F, Levitov L S, García de Abajo F J and Biegert J2018 Nat. Commun. 9 1018 [23] Huang L, Hartland G V, Chu L Q, Luxmi, Feenstra R M, Lian C, Tahy K and Xing H2010 Nano Lett. 10 1308 [24] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L2013 Nat. Phys. 9 248 [25] Sun D, Divin C, Mihnev M, Winzer T, Malic E, Knorr A, Sipe J E, Berger C, de Heer W A, First P N and Norris T B2012 New J. Phys. 14 105012 [26] Li G, Amer N, Hafez H A, Huang S, Turchinovich D, Mochalin V N, Hegmann F A and Titova L V2020 Nano Lett. 20 636 [27] Titova L V, Cocker T L, Cooke D G, Wang X, Meldrum A and Hegmann F A2011 Phys. Rev. B 83 085403 [28] Beard M C, Turner G M and Schmuttenmaer C A2000 Phys. Rev. B 62 15764 [29] Paingad V C, Kunc J, Rejhon M, Rychetský I, Mohelský I, Orlita M and Kužel P2021 Adv. Funct. Mater. 31 2105763 [30] Jnawali G, Rao Y, Yan H and Heinz T F2013 Nano Lett. 13 524 [31] Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Zurutuza Elorza A, Bonn M, Levitov L S and Koppens F H L2013 Nat. Phys. 9 248 [32] Tomadin A, Hornett S M, Wang H I, Alexeev E M, Candini A, Coletti C, Turchinovich D, Kläui M, Bonn M, Koppens F H L, Hendry E, Polini M and Tielrooij K J2018 Sci. Adv. 4 eaar5313 [33] Mao H K, Chen X J, Ding Y, Li B and Wang L2018 Rev. Mod. Phys. 90 015007 [34] Zhang L, Tang Y, Khan A R, Hasan M M, Wang P, Yan H, Yildirim T, Torres J F, Neupane G P, Zhang Y, Li Q and Lu Y2020 Adv. Sci. 7 2002697 [35] Barboza A P M, Guimaraes M H D, Massote D V P, Campos L C, Barbosa Neto N M, Cancado L G, Lacerda R G, Chacham H, Mazzoni M S C and Neves B R A2011 Adv. Mater. 23 3014 [36] Xu F, Wu M Y, Safron N S, Roy S S, Jacobberger R M, Bindl D J, Seo J H, Chang T H, Ma Z and Arnold M S2014 Nano Lett. 14 682 [37] Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H and Chen B2019 Proc. Natl. Acad. Sci. USA 116 9186 [38] Tao Z, Du J, Qi Z, Ni K, Jiang S and Zhu Y2020 Appl. Phys. Lett. 116 133101 [39] Pietryga J M, Zhuravlev K K, Whitehead M, Klimov V I and Schaller R D2008 Phys. Rev. Lett. 101 217401 [40] Meng X, Pandey T, Jeong J, Fu S, Yang J, Chen K, Singh A, He F, Xu X, Zhou J, Hsieh W P, Singh A K, Lin J F and Wang Y2019 Phys. Rev. Lett. 122 155901 [41] Ni K, Du J, Yang J, Xu S, Cong X, Shu N, Zhang K, Wang A, Wang F, Ge L, Zhao J, Qu Y, Novoselov K S, Tan P, Su F and Zhu Y2021 Phys. Rev. Lett. 126 027402 [42] Zhang K, Xie J, Yang J, Jiang H, Zhang S, Zeng Z, Chen X, Wang T and Su F2022 Phys. Rev. B 105 195109 [43] Cantaluppi A, Buzzi M, Jotzu G, Nicoletti D, Mitrano M, Pontiroli D, Riccó M, Perucchi A, Di Pietro P and Cavalleri A2018 Nat. Phys. 14 837 [44] Fülöp J A, Pálfalvi L, Almási G and Hebling J2010 Opt. Express 18 12311 [45] Hirori H, Doi A, Blanchard F and Tanaka K2011 Appl. Phys. Lett. 98 091106 [46] Boubanga-Tombet S, Chan S, Watanabe T, Satou A, Ryzhii V and Otsuji T2012 Phys. Rev. B 85 035443 [47] Yamashita M and Otani C2021 Phys. Rev. Res. 3 013150 [48] Xu S, Huang D, Liu Z, Zhang K, Jiang H, Gou H, Zeng Z, Wang T and Su F2021 Opt. Express 29 14058 [49] Zhang K, Xie J, Yang J, Jiang H, Zhang S, Zeng Z, Chen X, Wang T and Su F2022 Phys. Rev. B 105 195109 [50] Gao B, Hartland G, Fang T, Kelly M, Jena D, Xing H Grace and Huang L2011 Nano Lett. 11 3184 [51] Betz A C, Vialla F, Brunel D, Voisin C, Picher M, Cavanna A, Madouri A, Féve G, Berroir J M, Plaçais B and Pallecchi E2012 Phys. Rev. Lett. 109 056805 [52] Song J C W, Reizer M Y and Levitov L S2012 Phys. Rev. Lett. 109 106602 [53] Winnerl S, Orlita M, Plochocka P, Kossacki P, Potemski M, Winzer T, Malic E, Knorr A, Sprinkle M, Berger C, de Heer W A, Schneider H and Helm M2011 Phys. Rev. Lett. 107 237401 [54] Cao H, Aivazian G, Fei Z, Ross J, Cobden D H and Xu X2016 Nat. Phys. 12 236 [55] Dawlaty J M, Shivaraman S and Chandrashekhar M 2008 Appl. Phys. Lett. 93 131905 [56] Brida D, Tomadin A, Manzoni C, Kim Y J, Lombardo A, Milana S, Nair R R, Novoselov K S, Ferrari A C, Cerullo G and Polini M2013 Nat. Commun. 4 1987 [57] Moody G, Kavir Dass C, Hao K, Chen C H, Li L J, Singh A, Tran K, Clark G, Xu X, Berghäuser G, Malic E, Knorr A and Li X2015 Nat. Commun. 6 8315 [58] Wu Y, Yin X, Hasaien J, Ding Y and Zhao J2020 Chin. Phys. Lett. 37 047801 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|