Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107305    DOI: 10.1088/1674-1056/ace15e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Optimization of thermoelectric properties in elemental tellurium via high pressure

Dongyao Zhao(赵东尧)1,†, Manman Yang(杨曼曼)1,†, Hairui Sun(孙海瑞)1,2,‡, Xin Chen(陈欣)1,2, Yongsheng Zhang(张永胜)1,2, and Xiaobing Liu(刘晓兵)1,2,§
1 Laboratory of High-Pressure Physics and Materials Science(HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
2 Advanced Research Institute of Multidisciplinary Sciences, Qufu Normal University, Qufu 273165, China
Abstract  High pressure and high temperature (HPHT) technology, as an extreme physical condition, plays an important role in regulating the properties of materials, having the advantages of enhancing doping efficiency, refining grain size, and manufacturing defects, therefore it is quite necessary to study the effectiveness on tuning thermoelectric properties. Elemental telluride, a potential candidate for thermoelectric materials, has the poor doping efficiency and high resistivity, which become an obstacle for practical applications. Here, we report the realization of a dual optimization of electrical behaviors and thermal conductivity through HPHT method combining with the introduction of black phosphorus. The results show the maximum $zT$ of 0.65 and an average $zT$ of 0.42 (300 K-610 K), which are increased by 55% and 68% in the synthesis pressure regulation system, respectively. This study clarifies that the HPHT method has significant advantages in modulating the thermoelectric parameters, providing a reference for seeking high performance thermoelectric materials.
Keywords:  high pressure      thermoelectric      thermal conductivity      power factor  
Received:  21 April 2023      Revised:  09 June 2023      Accepted manuscript online:  25 June 2023
PACS:  73.50.Lw (Thermoelectric effects)  
  91.60.Gf (High-pressure behavior)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804185, 11974208, 52172212, 52102335, and 52002217) and the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020YQ05, ZR2019MA054, 2019KJJ020, ZR2021YQ03, and 2022KJA043).
Corresponding Authors:  Hairui Sun, Xiaobing Liu     E-mail:  hairuisun1216@qfnu.edu.cn;xiaobing.phy@qfnu.edu.cn

Cite this article: 

Dongyao Zhao(赵东尧), Manman Yang(杨曼曼), Hairui Sun(孙海瑞), Xin Chen(陈欣), Yongsheng Zhang(张永胜), and Xiaobing Liu(刘晓兵) Optimization of thermoelectric properties in elemental tellurium via high pressure 2023 Chin. Phys. B 32 107305

[1] Liang Z Q, Chen L D and Bazan G C 2019 Adv. Electron. Mater. 5 1900650
[2] Shi X L, Zou J and Chen Z G 2020 Chem. Rev. 120 7399
[3] Wei T R, Guan M J and Yu J J 2018 Joule 2 2183
[4] Zhao L D, Lo S H and Zhang Y S 2014 Nature 508 373
[5] Kanatzidis M G, Mccarthy T J and Tanzer T A 1996 ChemInform 8 1465
[6] Li Z, Xiao C and Xie Y 2022 Appl. Phys. Rev. 9 011303
[7] Zhai R S, Hu L P and Wu H J 2017 Appl. Mater. Interfaces 9 28577
[8] Chen X, Duan S and Yi W C 2020 Small 16 2001820
[9] Wei Z, Wang C Y and Zhang J Y 2020 Appl. Mater. Interfaces 12 20653
[10] Duan S, Cui Y F and Yi W C 2021 Appl. Mater. Interfaces 13 18800
[11] Lin S Q, Li W and Zhang X Y 2017 Inorg. Chem. Front. 4 1066
[12] Yang M M, Su T C and Zhu H Y 2018 J. Mater. Sci. 53 11524
[13] Duan S, Cui Y F and Chen X 2019 Adv. Funct. Mater. 29 1904346
[14] Lv H Y, Lu W J and Shao D F 2014 Phys. Rev. B 90 085433
[15] Slack G A 1965 Phys. Rev. 139 A507
[16] Yang M M, Li X J and Duan S 2022 Adv. Energy. Mater. 12 2203014
[17] Chen X, Duan S and Yi W C 2020 Small 16 2001820
[18] Song J Y, Duan S and Chen X 2020 Chin. Phys. Lett. 37 076203
[19] Duan S, Cui Y F and Yi W C 2022 Small 18 2204197
[20] Guthmann C and Thuillier J M 1970 Phys. Status. Solidi 38 635
[21] Yang H Q, Chen Y J and Wang X Y 2018 CrystEngComm 20 7729
[22] Yang M M, Su T C and Zhou D W 2017 J. Mater. Sci. 52 10526
[23] Lin S Q, Li W and Chen Z W 2016 Nat. Commun. 7 10287
[24] An D C, Chen S P and Zhai X 2020 J. Mater. Chem. A 8 12156
[25] Yang M M, Su T C and Li S S 2021 J. Alloys Compd. 887 161342
[26] Chan T E, Lebeau J M and Venkatasubramanian R 2013 Appl. Phys. Lett. 103 144106
[27] Zhu H Y, Su T C and Li H T 2017 J. Eur. Ceram. Soc. 37 1541
[28] Liu Y X, Wang C and Han S 2021 Chin. Phys. Lett. 38 036201
[29] Chen X, Zhan X H and Wang X J 2021 Chin. Phys. Lett. 38 057402
[30] Adenis C I, Langer V and Lindqvist O 1989 Acta Cryst. C45 941
[31] Du Y C, Qiu G and Wang Y X 2017 Nano. Lett. 17 3965
[32] Sugai S and Shirotani I 1985 Solid State Commun. 53 753
[33] Fan X, Gao S and Chen Q 2022 Inorg. Chem. 61 8144
[34] Sulaiman S, Izman S and Uday M B 2022 RSC Adv. 12 5428
[35] Pei Y Z, Lalonde A D and Heinz N A 2012 Adv. Energy. Mater. 2 670
[36] Li W, Zheng L L and Ge B H 2017 Adv. Mater. 29 1605887
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适), Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成). Chin. Phys. B, 2023, 32(9): 096302.
[3] Unveiling phonon frequency-dependent mechanism of heat transport across stacking fault in silicon carbide
Fu Wang(王甫), Yandong Sun(孙彦东), Yu Zou(邹宇), Ben Xu(徐贲), and Baoqin Fu(付宝勤). Chin. Phys. B, 2023, 32(9): 096301.
[4] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[5] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[6] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[7] Enhancement of thermal rectification by asymmetry engineering of thermal conductivity and geometric structure for multi-segment thermal rectifier
Fu-Ye Du(杜甫烨), Wang Zhang(张望), Hui-Qiong Wang(王惠琼), and Jin-Cheng Zheng(郑金成). Chin. Phys. B, 2023, 32(6): 064402.
[8] Molecular dynamics study on the dependence of thermal conductivity on size and strain in GaN nanofilms
Ying Tang(唐莹), Junkun Liu(刘俊坤), Zihao Yu(于子皓), Ligang Sun(孙李刚), and Linli Zhu(朱林利). Chin. Phys. B, 2023, 32(6): 066502.
[9] Ga intercalation in van der Waals layers for advancing p-type Bi2Te3-based thermoelectrics
Yiyuan Chen(陈艺源), Qing Shi(石青), Yan Zhong(钟艳), Ruiheng Li(李瑞恒), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(6): 067201.
[10] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[11] An optimized smearing scheming for first Brillouin zone sampling and its application on thermal conductivity prediction of graphite
Chengye Li(李承业), Changying Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2023, 32(6): 064401.
[12] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[13] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[14] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[15] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
No Suggested Reading articles found!