Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 106103    DOI: 10.1088/1674-1056/acea68
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion

Fude Li(李福德)1, Hao Wang(王豪)1, Jinlong Li(李津龙)1, and Huayun Geng(耿华运)1,2,†
1 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, China;
2 HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
Abstract  Hydrogen and lithium, along with their compounds, are crucial materials for nuclear fusion research. High-pressure studies have revealed intricate structural transitions in all these materials. However, research on lithium hydrides beyond LiH has mostly focused on the low-temperature regime. Here, we use density functional theory and ab initio molecular dynamics simulations to investigate the behavior of LiH2, a hydrogen-rich compound, near its melting point. Our study is particularly relevant to the low-pressure region of the compression pathway of lithium hydrides toward fusion. We discovered a premelting superionic phase transition in LiH2 that has significant implications for its mass transportation, elastic properties, and sound velocity. The theoretical boundary for the superionic transition and melting temperature was then determined. In contrast, we also found that the primary compound of lithium hydrides, LiH, does not exhibit a superionic transition. These findings have important implications for optimizing the compression path to achieve the ignition condition in inertial confinement fusion research, especially when lithium tritium-deuteride (LiTD) is used as the fuel.
Keywords:  lithium polyhydrides      high pressure and high temperature      superionic state      phase transition  
Received:  20 May 2023      Revised:  11 July 2023      Accepted manuscript online:  26 July 2023
PACS:  61.50.Nw (Crystal stoichiometry)  
  62.50.-p (High-pressure effects in solids and liquids)  
  82.33.Pt (Solid state chemistry)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3802300), the National Natural Science Foundation of China (Grant No. 11672274), and the NSAF (Grant No. U1730248). Part of the computation was performed using the supercomputer at the Center for Computational Materials Science (CCMS) of the Institute for Materials Research (IMR) at Tohoku University of Japan.
Corresponding Authors:  Huayun Geng     E-mail:  s102genghy@caep.cn

Cite this article: 

Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运) Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion 2023 Chin. Phys. B 32 106103

[1] Lindl J D, McCrory R L and Campbell E M 1992 Phys. Today 45 32
[2] Fasel D and Tran M Q 2005 Fusion Eng. Des. 75 1163
[3] Pfalzner S 2006 An Introduction to Inertial Confinement Fusion (Boca Raton: CRC Press) p. 16
[4] Chen Y M, Chen X R, Wu Q, Geng H Y, Yan X Z, Wang Y X and Wang Z W 2016 J. Phys. D: Appl. Phys. 49 355305
[5] Chen Y M, Geng H Y, Yan X Z, Sun Y, Wu Q and Chen X 2017 Inorg. Chem. 56 3867
[6] Cowley S C 2016 Nat. Phys. 12 384
[7] Zurek E, Hoffmann R, Ashcroft N W, Oganov A R and Lyakhov A O 2009 Proc. Natl. Acad. Sci. USA 106 17640
[8] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 B864
[9] Kohn W and Sham L J 1965 Phys. Rev. A 140 A1133
[10] Yan X Z 2021 Personal communication January 31 2021
[11] Howie R T, Narygina O, Guillaume C L, Evans S and Gregoryanz E 2012 Phys. Rev. B 86 064108
[12] Kuno K, Matsuoka T, Nakagawa T, Hirao N, Ohishi Y, Shimizu K, Takahama K, Ohta K, Sakata M, Nakamoto Y and Kume T 2015 High Press. Res. 35 16
[13] Pépin C, Loubeyre P, Occelli F and Dumas P 2015 Proc. Natl. Acad. Sci. USA 112 7673
[14] Matsuoka T, Kuno K, Ohta K, Sakata M, Nakamoto Y, Hirao N, Ohishi Y, Shimizu K, Kume T and Sasaki S 2017 J. Raman Spectrosc. 48 1222
[15] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[16] McMahon J M and Ceperley D M 2011 Phys. Rev. Lett. 106 165302
[17] Geng H Y, Song H X, Li J F and Wu Q 2012 J. Appl. Phys. 111 063510
[18] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[19] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[20] Grochala W and Edwards P P 2004 Chem. Rev. 104 1283
[21] Allen M P and Tildesley D J 1991 Computer Simulation of Liquids (New York: Oxford university press) p. 398
[22] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[23] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Dion M, Rydberg H, Schröder E, Langreth D C and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[28] Nosé S 1984 J. Chem. Phys. 81 511
[29] Nosé S 1991 Prog. Theor. Exp. Phys. 103 1
[30] Hoover W G 1985 Phys. Rev. A 31 1695
[31] Wang H, Gan Y, Geng H Y and Chen X R 2022 Comput. Phys. Commun. 281 108495
[32] Belonoshko A B, Skorodumova N V, Rosengren A and Johansson B 2006 Phys. Rev. B 73 012201
[33] Geng H Y and Wu Q 2016 Sci. Rep. 6 36745
[34] Geng H Y, Hoffmann R and Wu Q 2015 Phys. Rev. B 92 104103
[35] Hull S 2004 Rep. Prog. Phys. 67 1233
[36] Boyce J B and Huberman B A 1979 Phys. Rep. 51 189
[37] Geng H Y, Wu Q, Marqués M and Ackland G J 2019 Phys. Rev. B 100 134109
[38] Ogitsu T, Schwegler E, Gygi F and Galli G 2003 Phys. Rev. Lett. 91 175502
[39] Duan D, Liu Y, Ma Y, Shao Z, Liu B and Cui T 2017 Natl. Sci. Rev. 4 121
[40] Norman G E and Saitov I M 2017 Doklady Phys. 62 294
[41] Pierleoni C, Holzmann M and Ceperley D M 2018 Contrib. Plasma Phys. 58 99
[42] Mouhat F and Coudert F X 2014 Phy. Rev. B 90 224104
[1] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[2] A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
Yan-Qi Wang(王妍琪), Chuan-Zhao Zhang(张传钊), Jin-Quan Zhang(张金权), Song Li(李松), Meng Ju(巨濛), Wei-Guo Sun(孙伟国), Xi-Long Dou(豆喜龙), and Yuan-Yuan Jin(金园园). Chin. Phys. B, 2023, 32(9): 097402.
[3] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[4] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[5] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[6] Phase behavior and percolation in an equilibrium system of symmetrically interacting Janus disks on the triangular lattice
Xixian Zhang(张希贤) and Hao Hu(胡皓). Chin. Phys. B, 2023, 32(8): 080502.
[7] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[8] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[9] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[10] Topological properties of tetratomic Su-Schrieffer-Heeger chains with hierarchical long-range hopping
Guan-Qiang Li(李冠强), Bo-Han Wang(王博涵), Jing-Yu Tang(唐劲羽), Ping Peng(彭娉), and Liang-Wei Dong(董亮伟). Chin. Phys. B, 2023, 32(7): 077102.
[11] Structural phase transition and transport properties in topological material candidate NaZn4As3
Qing-Xin Dong(董庆新), Bin-Bin Ruan(阮彬彬), Yi-Fei Huang(黄奕飞), Yi-Yan Wang(王义炎), Li-Bo Zhang(张黎博), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2023, 32(6): 066501.
[12] Orderly hysteresis in field-driven robot swarm active matter
Yanping Liu(刘艳萍), Gao Wang(王高), Peilong Wang(王培龙), Daming Yuan(袁大明), Shuaixu Hou(侯帅旭), Yangkai Jin(金阳凯), Jing Wang(王璟), and Liyu Liu(刘雳宇). Chin. Phys. B, 2023, 32(6): 068701.
[13] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[14] A thermal conductivity switch via the reversible 2H-1T' phase transition in monolayer MoTe2
Dingbo Zhang(张定波), Weijun Ren(任卫君), Ke Wang(王珂), Shuai Chen(陈帅),Lifa Zhang(张力发), Yuxiang Ni(倪宇翔), and Gang Zhang(张刚). Chin. Phys. B, 2023, 32(5): 050505.
[15] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
No Suggested Reading articles found!