CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
New MgO-H2O compounds at extreme conditions |
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣)† |
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The reaction of water and other materials has been the central topic under high-pressure physics research, because the Earth, super-Earth, Uranus, Neptune and other planets contain a great amount of water inside. However, the reaction between star-rich MgO and water under ultra-high pressure remains still poorly understood. Here, using ab initio evolutionary structure prediction researches of the structures of MgO-H2O system at 300 GPa-600 GPa, we find that (MgO)2H2O and MgO(H2O)2 could become stable. The (MgO)2H2O compounds may be an important component of super-Earth and the ice-rock boundary of Uranus and Neptune. Furthermore, it may be the reservoir under high pressure before the forming of the Earth's core or other super-Earths. The current findings could expand our knowledge and improve our understanding of the evolution and composition of planets.
|
Received: 17 April 2023
Revised: 20 June 2023
Accepted manuscript online: 21 June 2023
|
PACS:
|
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
88.10.gc
|
(Simulation; prediction models)
|
|
64.70.K
|
(Solid-solid transitions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12204280 and 12147135), the Natural Science Foundation of Shandong Province of China (Grant No. ZR202103010004), and the Postdoctoral Science Foundation of China (Grant No. 2021M691980). |
Corresponding Authors:
Jurong Zhang
E-mail: zjr@calypso.cn
|
Cite this article:
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣) New MgO-H2O compounds at extreme conditions 2023 Chin. Phys. B 32 076201
|
[1] Pearson D, Brenker F, Nestola F, McNeill J, Nasdala L, Hutchison M, Matveev S, Mather K, Silversmit G and Schmitz S 2014 Nature 507 221 [2] Ohtani E 2020 Natl. Sci. Rev. 7 224 [3] Hubbard W 1981 Science 214 145 [4] Li H F, Oganov A R, Cui H, Zhou X F, Dong X and Wang H T 2022 Phys. Rev. Lett. 128 035703 [5] Guillot T 2005 Annu. Rev. Earth Planet. Sci. 33 493 [6] Redmer R, Mattsson T R, Nettelmann N and French M 2011 Icar 211 798 [7] Gao H, Liu C, Shi J, Pan S, Huang T, Lu X, Wang H T, Xing D and Sun J 2022 Phys. Rev. Lett. 128 035702 [8] Kim T, Chariton S, Prakapenka V, Pakhomova A, Liermann H P, Liu Z, Speziale S, Shim S H and Lee Y 2021 Nat. Astron. 5 815 [9] Fiquet G 2001 Z. Krist-Cryst. Mater. 216 248 [10] Immoor J, Miyagi L, Liermann H P, Speziale S, Schulze K, Buchen J, Kurnosov A and Marquardt H 2022 Nature 603 276 [11] McDonough W F and Sun S S 1995 Chem. Geol. 120 223 [12] Podolak M, Weizman A and Marley M 1995 Planet. Space Sci. 43 1517 [13] Duffy T S, Hemley R J and Mao H k 1995 Phys. Rev. Lett. 74 1371 [14] Zhu Q, Oganov A R and Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696 [15] Belonoshko A B, Arapan S, Martonak R and Rosengren A 2010 Phys. Rev. B 81 054110 [16] Benoit M, Bernasconi M, Focher P and Parrinello M 1996 Phys. Rev. Lett. 76 2934 [17] Huang P, Liu H, Lv J, Li Q, Long C, Wang Y, Chen C, Hemley R J and Ma Y 2020 Proc. Natl. Acad. Sci. USA 117 5638 [18] Hermann A and Mookherjee M 2016 Proc. Natl. Acad. Sci. USA 113 13971 [19] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 [20] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 [21] Zhang J, Liu H, Ma Y and Chen C 2022 Natl. Sci. Rev. 9 nwab168 [22] Liu H, Naumov I I, Hoffmann R, Ashcroft N and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 [23] Liu S, Gao P, Hermann A, Yang G, Lü J, Ma Y, Mao H K and Wang Y 2022 Sci. Bull. 67 971 [24] Zhong X, Sun Y, Iitaka T, Xu M, Liu H, Hemley R J, Chen C and Ma Y 2022 J. Am. Chem. Soc. 144 13394 [25] Cui W and Li Y 2019 Chin. Phys. B 28 107104 [26] Shuai H S D, Liu Y X, Wang C, Chen X, Sun H R and Liu X B 2023 Chin. Phys. B 32 16101 [27] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [28] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [29] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [30] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [31] Pan S, Huang T, Vazan A, Liang Z, Liu C, Wang J, Pickard C J, Wang H T, Xing D and Sun J 2023 Nat. Commun. 14 1165 [32] Nettelmann N, Helled R, Fortney J and Redmer R 2013 Planet. Space Sci. 77 143 [33] French M, Mattsson T R and Redmer R 2010 Phys. Rev. B 82 174108 [34] Chau R, Hamel S and Nellis W J 2011 Nat. Commun. 2 203 [35] Nellis W 2017 J. Phys.: Conf. Ser. 950 042046 [36] Dorn C, Hinkel N R and Venturini J 2017 Astron. Astrophys. 597 A38 [37] Van Hoolst T, Noack L and Rivoldini A 2019 Adv. Phys. X 4 1630316 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|