New carbon-nitrogen-oxygen compounds as high energy density materials
Junyu Shen(沈俊宇)1, Qingzhuo Duan(段青卓)1, Junyi Miao(苗俊一)1, Shi He(何适)2, Kaihua He(何开华)1, Wei Dai(戴伟)3, and Cheng Lu(卢成)1,†
1 School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China; 2 Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 430074, China; 3 School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China
Abstract Molecular crystals are complex systems exhibiting various crystal structures, and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure. Here, we perform an extensive structure search of ternary carbon-nitrogen-oxygen (CNO) compound under high pressure with the CALYPSO method and first principles calculations, and successfully identify three polymeric CNO compounds with Pbam, C2/m and Im2 symmetries under 100 GPa. More interestingly, these structures are also dynamically stable at ambient pressure, and are potential high energy density materials (HEDMs). The energy densities of Pbam, C2/m and Im2 phases of CNO are about 2.30 kJ/g, 1.37 kJ/g and 2.70 kJ/g, respectively, with the decompositions of graphitic carbon and molecular carbon dioxide and α-N (molecular N2) at ambient pressure. The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures, which offer crucial insights for designs and syntheses of novel HEDMs.
(Electron density of states and band structure of crystalline solids)
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174352 and 12111530103), the Fundamental Research Funds for the Central Universities, and China University of Geosciences (Wuhan) (Grant No. G1323523065).
Corresponding Authors:
Cheng Lu
E-mail: lucheng@calypso.cn
Cite this article:
Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成) New carbon-nitrogen-oxygen compounds as high energy density materials 2023 Chin. Phys. B 32 096302
[1] Raza Z, Pickard C J, Pinilla C and Saitta A M 2013 Phys. Rev. Lett.111 235501 [2] Goncharov A F, Gregoryanz E, Mao H K, Liu Z X and Hemley R J 2000 Phys. Rev. Lett.85 1262 [3] Eremets M I, Hemley R J, Mao H K and Gregoryanz E 2001 Nature411 170 [4] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater.3 558 [5] Hou J, Weng X J, Oganov A R, Shao X, Gao G Y, Dong X, Wang H T, Tian Y J and Zhou X F 2021 Phys. Rev. B103 L060102 [6] Tse J S 2020 Natl. Sci. Rev.7 149 [7] Gregoryanz E, Goncharov A F, Hemley R J and Mao H K 2001 Phys. Rev. B64 052103 [8] Huang B W and Frapper G 2018 Chem. Mater.30 7623 [9] Ding C, Wang J J, Han Y, Yuan J N, Gao H and Sun J 2022 Chin. Phys. Lett.39 036101 [10] Ding C, Yuan J N, Cogollo-Olivo B H, Wang Y L, Wang X M and Sun J 2023 Sci. China Phys. Mech.66 228211 [11] Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L and Dubrovinskaia N 2020 Phys. Rev. Lett.124 216001 [12] Miao J Y, Lu Z S, Peng F and Lu C 2021 Chin. Phys. Lett.38 066201 [13] Hirshberg B, Gerber R B and Krylov A I 2014 Nat. Chem.6 52 [14] Wang H 2013 Chin. Phys. B22 086301 [15] Peng F, Yao Y S, Liu H Y and Ma Y M 2015 J. Phys. Chem. Lett.6 2363 [16] Jiang X X, Chen G Y, Li Y T, Cheng X L and Tang C M 2015 Chin. Phys. B25 026102 [17] Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X and Li Y C 2020 Chin. Phys. B29 106201 [18] Yuan J N, Xia K, Ding C, Wang X M, Lu Q and Sun J 2022 Matter. Radiat. Extrem.7 038402 [19] Zhu C Y, Bi H X, Zhang S T, Wei S B and Li Q 2015 Rsc. Adv.5 65745 [20] Dai W, He S, Ding K W and Lu C 2022 Acs. Appl. Mater. Inter.14 49986 [21] Liu L L, Wang D H, Zhang S T and Zhang H J 2021 J. Mater. Chem. A9 16751 [22] Yoo C S, Kim M, Lim J, Ryu Y J and Batyrev I G 2018 J. Phys. Chem. C122 13054 [23] Zhu C Y, Li Q, Zhou Y Y, Zhang M, Zhang S T and Li Q 2014 J. Phys. Chem. C118 27252 [24] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B82 094116 [25] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun183 2063 [26] Kresse G and Furthmüller J 1996 Comp. Mater. Sci.6 15 [27] Duan Q Z, Shen J Y, Zhong X, Lu H Y and Lu C 2022 Phys. Rev. B105 214503 [28] Sun W G, Chen B L, Li X F, Peng F, Hermann A and Lu C 2023 Phys. Rev. B107 214511 [29] Tian Y H, Sun W G, Chen B L, Jin Y Y and Lu C 2019 Chin. Phys. B28 103104 [30] Blöchl P E 1994 Phys. Rev. B50 17953 [31] Steele B A and Oleynik I I 2017 Inorg. Chem.56 13321 [32] Mouhat F and Coudert F X 2014 Phys. Rev. B90 224104 [33] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter21 084204 [34] Dronskowski R and Blöchl P E 1993 J. Phys. Chem.97 8617 [35] Steinberg S and Dronskowski R 2018 Crystals8 225 [36] Fan C Z, Li J and Wang L M 2014 Sci. Rep.4 1 [37] Yang M, Ma H H and Shen Z W 2019 J. Energy Mater.37 459 [38] Korkin A A and Bartlett R J 1996 J. Am. Chem. Soc.118 12244 [39] Kamlet M J and Dickinson C 1968 J. Chem. Phys.48 43
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.