Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 096302    DOI: 10.1088/1674-1056/acce94
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

New carbon-nitrogen-oxygen compounds as high energy density materials

Junyu Shen(沈俊宇)1, Qingzhuo Duan(段青卓)1, Junyi Miao(苗俊一)1, Shi He(何适)2, Kaihua He(何开华)1, Wei Dai(戴伟)3, and Cheng Lu(卢成)1,†
1 School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, China;
2 Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan 430074, China;
3 School of Mathematics and Physics, Jingchu University of Technology, Jingmen 448000, China
Abstract  Molecular crystals are complex systems exhibiting various crystal structures, and accurately modeling the crystal structures is essential for understanding their physical behaviors under high pressure. Here, we perform an extensive structure search of ternary carbon-nitrogen-oxygen (CNO) compound under high pressure with the CALYPSO method and first principles calculations, and successfully identify three polymeric CNO compounds with Pbam, C2/m and I4¯m2 symmetries under 100 GPa. More interestingly, these structures are also dynamically stable at ambient pressure, and are potential high energy density materials (HEDMs). The energy densities of Pbam, C2/m and I4¯m2 phases of CNO are about 2.30 kJ/g, 1.37 kJ/g and 2.70 kJ/g, respectively, with the decompositions of graphitic carbon and molecular carbon dioxide and α-N (molecular N2) at ambient pressure. The present results provide in-depth insights into the structural evolution and physical properties of CNO compounds under high pressures, which offer crucial insights for designs and syntheses of novel HEDMs.
Keywords:  molecular crystals      high pressure      structure searches      first principles calculations      high energy density materials  
Received:  08 April 2023      Revised:  08 April 2023      Accepted manuscript online:  20 April 2023
PACS:  63.20.dk (First-principles theory)  
  31.15.E-  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174352 and 12111530103), the Fundamental Research Funds for the Central Universities, and China University of Geosciences (Wuhan) (Grant No. G1323523065).
Corresponding Authors:  Cheng Lu     E-mail:  lucheng@calypso.cn

Cite this article: 

Junyu Shen(沈俊宇), Qingzhuo Duan(段青卓), Junyi Miao(苗俊一), Shi He(何适),Kaihua He(何开华), Wei Dai(戴伟), and Cheng Lu(卢成) New carbon-nitrogen-oxygen compounds as high energy density materials 2023 Chin. Phys. B 32 096302

[1] Raza Z, Pickard C J, Pinilla C and Saitta A M 2013 Phys. Rev. Lett. 111 235501
[2] Goncharov A F, Gregoryanz E, Mao H K, Liu Z X and Hemley R J 2000 Phys. Rev. Lett. 85 1262
[3] Eremets M I, Hemley R J, Mao H K and Gregoryanz E 2001 Nature 411 170
[4] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[5] Hou J, Weng X J, Oganov A R, Shao X, Gao G Y, Dong X, Wang H T, Tian Y J and Zhou X F 2021 Phys. Rev. B 103 L060102
[6] Tse J S 2020 Natl. Sci. Rev. 7 149
[7] Gregoryanz E, Goncharov A F, Hemley R J and Mao H K 2001 Phys. Rev. B 64 052103
[8] Huang B W and Frapper G 2018 Chem. Mater. 30 7623
[9] Ding C, Wang J J, Han Y, Yuan J N, Gao H and Sun J 2022 Chin. Phys. Lett. 39 036101
[10] Ding C, Yuan J N, Cogollo-Olivo B H, Wang Y L, Wang X M and Sun J 2023 Sci. China Phys. Mech. 66 228211
[11] Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L and Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001
[12] Miao J Y, Lu Z S, Peng F and Lu C 2021 Chin. Phys. Lett. 38 066201
[13] Hirshberg B, Gerber R B and Krylov A I 2014 Nat. Chem. 6 52
[14] Wang H 2013 Chin. Phys. B 22 086301
[15] Peng F, Yao Y S, Liu H Y and Ma Y M 2015 J. Phys. Chem. Lett. 6 2363
[16] Jiang X X, Chen G Y, Li Y T, Cheng X L and Tang C M 2015 Chin. Phys. B 25 026102
[17] Liu Y, Su H P, Niu C P, Wang X L, Zhang J R, Ge Z X and Li Y C 2020 Chin. Phys. B 29 106201
[18] Yuan J N, Xia K, Ding C, Wang X M, Lu Q and Sun J 2022 Matter. Radiat. Extrem. 7 038402
[19] Zhu C Y, Bi H X, Zhang S T, Wei S B and Li Q 2015 Rsc. Adv. 5 65745
[20] Dai W, He S, Ding K W and Lu C 2022 Acs. Appl. Mater. Inter. 14 49986
[21] Liu L L, Wang D H, Zhang S T and Zhang H J 2021 J. Mater. Chem. A 9 16751
[22] Yoo C S, Kim M, Lim J, Ryu Y J and Batyrev I G 2018 J. Phys. Chem. C 122 13054
[23] Zhu C Y, Li Q, Zhou Y Y, Zhang M, Zhang S T and Li Q 2014 J. Phys. Chem. C 118 27252
[24] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[25] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun 183 2063
[26] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[27] Duan Q Z, Shen J Y, Zhong X, Lu H Y and Lu C 2022 Phys. Rev. B 105 214503
[28] Sun W G, Chen B L, Li X F, Peng F, Hermann A and Lu C 2023 Phys. Rev. B 107 214511
[29] Tian Y H, Sun W G, Chen B L, Jin Y Y and Lu C 2019 Chin. Phys. B 28 103104
[30] Blöchl P E 1994 Phys. Rev. B 50 17953
[31] Steele B A and Oleynik I I 2017 Inorg. Chem. 56 13321
[32] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[33] Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204
[34] Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617
[35] Steinberg S and Dronskowski R 2018 Crystals 8 225
[36] Fan C Z, Li J and Wang L M 2014 Sci. Rep. 4 1
[37] Yang M, Ma H H and Shen Z W 2019 J. Energy Mater. 37 459
[38] Korkin A A and Bartlett R J 1996 J. Am. Chem. Soc. 118 12244
[39] Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43
[1] High-pressure and high-temperature sintering of pure cubic silicon carbide: A study on stress-strain and densification
Jin-Xin Liu(刘金鑫), Fang Peng(彭放), Guo-Long Ma(马国龙), Wen-Jia Liang(梁文嘉), Rui-Qi He(何瑞琦), Shi-Xue Guan(管诗雪), Yue Tang(唐越), and Xiao-Jun Xiang(向晓君). Chin. Phys. B, 2023, 32(9): 098101.
[2] Pressure induced insulator to metal transition in quantum spin liquid candidate NaYbS2
Yating Jia(贾雅婷), Chunsheng Gong(龚春生), Zhiwen Li(李芷文), Yixuan Liu(刘以轩), Jianfa Zhao(赵建发), Zhe Wang(王哲), Hechang Lei(雷和畅), Runze Yu(于润泽), and Changqing Jin(靳常青). Chin. Phys. B, 2023, 32(9): 096201.
[3] New MgO-H2O compounds at extreme conditions
Lanci Guo(郭兰慈) and Jurong Zhang(张车荣). Chin. Phys. B, 2023, 32(7): 076201.
[4] An ultrafast spectroscopy system for studying dynamic properties of superconductors under high pressure and low temperature conditions
Jian Zhu(朱健), Ye-Xi Li(李叶西), Deng-Man Feng(冯登满), De-Peng Su(苏德鹏), Dong-Niu Fan(范东牛),Song Yang(杨松), Chen-Xiao Zhao(赵辰晓), Gao-Yang Zhao(赵高扬), Liang Li(李亮),Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), and Qiang Zhou(周强). Chin. Phys. B, 2023, 32(6): 067801.
[5] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[6] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[7] Chair-like N66- in AlN3 with high-energy density
Shi-Tai Guo(郭世泰), Zhen-Zhen Xu(徐真真), Yan-Lei Geng(耿延雷), Qi Rui(芮琦), Dian-Chen Du(杜殿臣), Jian-Fu Li(李建福), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2023, 32(12): 126202.
[8] Structural stability and ion migration of Li2MnO3 cathode material under high pressures
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐). Chin. Phys. B, 2023, 32(12): 126101.
[9] Optimization of thermoelectric properties in elemental tellurium via high pressure
Dongyao Zhao(赵东尧), Manman Yang(杨曼曼), Hairui Sun(孙海瑞), Xin Chen(陈欣), Yongsheng Zhang(张永胜), and Xiaobing Liu(刘晓兵). Chin. Phys. B, 2023, 32(10): 107305.
[10] First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利). Chin. Phys. B, 2023, 32(10): 107401.
[11] Prediction of superionic state in LiH2 at conditions enroute to nuclear fusion
Fude Li(李福德), Hao Wang(王豪), Jinlong Li(李津龙), and Huayun Geng(耿华运). Chin. Phys. B, 2023, 32(10): 106103.
[12] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[13] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[14] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!