CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5 |
Xiaoran Yang(杨晓冉)1, Qi Tang(唐绮)1,†, Qiuyun Zhou(周秋韵)1, Huaiping Wang(王怀平)1, Yi Li(李意)1, Xue Fu(付雪)1, Jiawen Zhang(张加文)2,3, Yu Song(宋宇)2, Huiqiu Yuan(袁辉球)2,3, Pengcheng Dai(戴鹏程)4, and Xingye Lu(鲁兴业)1,‡ |
1 Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China; 2 Center for Correlated Matter and School of Physics, Zhejiang University, Hangzhou 310058, China; 3 State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China; 4 Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA |
|
|
Abstract The kagome superconductor CsV3Sb5 with exotic electronic properties has attracted substantial research interest, and the interplay between the superconductivity and the charge-density wave is crucial for understanding its unusual electronic ground state. In this work, we performed resistivity and AC magnetic susceptibility measurements on CsV3Sb5 single crystals uniaxially-strained along [100] and [110] directions. We find that the uniaxial-strain tuning effect of Tc (Tc/dε) and TCDW (dTCDW/dε) are almost identical along these distinct high-symmetry directions. These findings suggest the in-plane uniaxial-strain-tuning of Tc and TCDW in CsV3Sb5 are dominated by associated c-axis strain, whereas the response to purely in-plane strains is likely small.
|
Received: 13 August 2023
Revised: 31 August 2023
Accepted manuscript online: 06 September 2023
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
71.10.Pm
|
(Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))
|
|
74.25.-q
|
(Properties of superconductors)
|
|
Fund: The work at Beijing Normal University is supported by the National Key Projects for Research and Development of China (Grant No.2021YFA1400400) and the National Natural Science Foundation of China (Grant Nos.12174029 and 11922402). The work at Zhejiang University was supported by the National Key Research and Development Program of China (Grant No.2022YFA1402200), the Pioneer and Leading Goose Research and Development Program of Zhejiang Province, China (Grant No.2022SDX- HDX0005), the Key Research and Development Program of Zhejiang Province, China (Grant No.2021C01002), and the National Natural Science Foundation of China (Grant No.12274363). |
Corresponding Authors:
Qi Tang, Xingye Lu
E-mail: qitang@mail.bnu.edu.cn;luxy@bnu.edu.cn
|
Cite this article:
Xiaoran Yang(杨晓冉), Qi Tang(唐绮), Qiuyun Zhou(周秋韵), Huaiping Wang(王怀平), Yi Li(李意), Xue Fu(付雪), Jiawen Zhang(张加文), Yu Song(宋宇), Huiqiu Yuan(袁辉球), Pengcheng Dai(戴鹏程), and Xingye Lu(鲁兴业) In-plane uniaxial-strain tuning of superconductivity and charge-density wave in CsV3Sb5 2023 Chin. Phys. B 32 127101
|
[1] Yin J X, Lian B and Hasan M Z 2022 Nature 612 647 [2] Neupert T, Denner M M, Yin J X, Thomale R and Hasan M Z 2022 Nat. Phys. 13 137 [3] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 [4] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002 [5] Chapai R, Leroux M, Oliviero V, Vignolles D, Bruyant N, Smylie M P, Chung D Y, Kanatzidis M G, Kwok W K, Mitchell J F and Welp U 2023 Phys. Rev. Lett. 130 126401 [6] Kang M, Fang S, Kim J K, Ortiz B R, Ryu S H, Kim J, Yoo J, Sangiovanni G, Sante D D, Park B G, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Wilson S D, Park J H and Comin R 2022 Nat. Phys. 18 301 [7] Zhou S and Wang Z Q 2022 Nat. Commun. 13 7288 [8] Wang P Y, Xing Y, Yin Q W, Wang A Q, Shen J, Lei H C, Wang Z Q and Wang J 2022 arXiv: 2201.10352 [9] Xu H S, Yan Y J, Yin R T, Xia W, Fang S J, Chen Z Y, Li Y J, Yang W Q, Guo Y F and Feng D L 2021 Phys. Rev. Lett. 127 187004 [10] Broyles C, Graf D, Yang H T, Dong X L, Gao H J and Ran S 2022 Phys. Rev. Lett. 129 157001 [11] Li H, Zhang T T, Yilmaz T, Pai Y Y, Marvinney C E, Said A, Yin Q W, Gong C S, Tu Z J, Vescovo E, Nelson C S, Moore R G, Murakami S, Lei H C, Lee H N, Lawrie B J and Miao H 2021 Phys. Rev. X 11 031050 [12] Liang Z, Hou X, Zhang F, Ma W, Wu P, Zhang Z, Yu F, Ying J J, Jiang K, Shan L, Wang Z and Chen X H 2021 Phys. Rev. X 11 031026 [13] Nie L P, Sun K L, Ma W R, Song D W, Zheng L X, Liang Z W, Wu P, Yu F H, Jian Li J, Shan M, Zhao D, Li S J, Kang B L, Wu Z M, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z Y, Wu T and Chen X H 2022 Nature 604 59 [14] Oey Y M, Ortiz B R, Kaboudvand F, Frassineti J, Garcia E, Cong R, Sanna S, Mitrović V F, Seshadri R and Wilson S D 2022 Phys. Rev. Mater. 6 L041801 [15] Li Y K, Li Q, Fan X W, Liu J J, Feng Q, Liu M, Wang C L, Yin J X, Duan J X, Li X, Wang Z W, Wen H H and Yao Y G 2022 Phys. Rev. B 105 L180507 [16] Zhong Y G, Liu J J, Wu X X, Guguchia Z, Yin J X, Mine A, Li Y K, Najafzadeh S, Das D, Mielke C, Khasanov R, Luetkens H, Suzuki T, Liu K C, Han X L, Kondo T, Hu J P, Shin S, Wang Z W, Shi X, Yao Y G and Okazaki K 2022 Nature 617 488 [17] Song Y P, Ying T P, Chen X, Han X, Wu X X, Schnyder A P, Huang Y, Guo J G and Chen X L 2021 Phys. Rev. Lett. 127 237001 [18] Song B Q, Ying T P, Wu X X, Xia W, Yin Q W, Zhang Q H, Song Y P, Yang X F, Guo J G, Gu L, Chen X L, Hu J P, Schnyder A P, Lei H C, Guo Y F and Li S Y 2023 Nat. Commun. 14 2492 [19] Chen K Y, Wang N N, Yin Q W, Gu Y H, Jiang K, Tu Z J, Gong C S, Uwatoko Y, Sun J P, Lei H C, Hu J P and Cheng J G 2021 Phys. Rev. Lett. 126 247001 [20] Yu F H, Ma D H, Zhuo W Z, Liu S Q, Wen X K, Lei B, Ying J J and Chen X H 2021 Nat. Commun. 12 3645 [21] Zheng L X, Wu Z M, Yang Y, Nie L P, Shan M, Sun K L, Song D W, Yu F H, Li J, Zhao D, Li S J, Kang B L, Zhou Y B, Liu K, Xiang Z J, Ying J J, Wang Z T, Wu T and Chen X H 2022 Nature 611 682 [22] Yu F H, Zhu X D, Wen X K, Gui Z G, Li Z Y, Han Y L, Wu T, Wang Z Y, Xiang Z J, Qiao Z H, Ying J J and Chen X H 2022 Phys. Rev. Lett. 128 077001 [23] Yin L C, Zhang D T, Chen C F, Ye G, Yu F H, Ortiz B R, Luo S S, Duan W Y, Su H, Ying J J, Wilson S D, Chen X H, Yuan H Q, Song Y and Lu X 2021 Phys. Rev. B 104 174507 [24] Qian T M, Christensen M H, Hu C W, Saha A, Andersen B M, Fernandes R M, Birol T and Ni N 2021 Phys. Rev. B 104 144506 [25] Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P and Hicks C W 2021 Phys. Rev. X 11 021038 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|