CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors |
Jie Cheng(程杰)1,†, Yu-Lan Cheng(程玉兰)2, Bin Li(李斌)1,‡, and Sheng-Li Liu(刘胜利)1 |
1 School of Science, New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2 College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China |
|
|
Abstract Isotope effect on superconductive transition temperature ($T_{\rm c}$) is an essential indicator to examine whether the mechanism of superconductors is conventional. Unconventional isotope effect of BiS$_{2}$-based superconductors has been previously reported in ambient-pressure tetragonal phase. However, to comprehensively ascertain the nature of superconductivity, the investigation of BiS$_{2}$-based system in high-pressure structure is highly desirable. In this work, we carried out the first-principles calculations of phonon spectra and superconductivity in high-pressure monoclinic phase of LaO$_{0.5}$F$_{0.5}$BiS$_{2}$ with $^{32}$S and $^{34}$S, and observed that the corresponding isotope coefficient is $0.13 \le \alpha\le 0.20$. This value is much greater than that of BiS$_{2}$-based superconductors in ambient-pressure phase, but slightly smaller than that of conventional MgB$_{2}$. Taking into account the calculated $T_{\rm c}$ lower than experimental results, we finally conclude that the moderate phonon-mediated pairing plays a significant role in forming superconductivity of BiS$_{2}$-based system in high-pressure phase, moreover, the cooperative multiple paring interactions should also be considered.
|
Received: 12 February 2023
Revised: 07 April 2023
Accepted manuscript online: 17 April 2023
|
PACS:
|
74.62.Fj
|
(Effects of pressure)
|
|
74.25.Kc
|
(Phonons)
|
|
31.15.A-
|
(Ab initio calculations)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175107) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY219087 and NY220038). |
Corresponding Authors:
Jie Cheng, Bin Li
E-mail: chengj@njupt.edu.cn;libin@njupt.edu.cn
|
Cite this article:
Jie Cheng(程杰), Yu-Lan Cheng(程玉兰), Bin Li(李斌), and Sheng-Li Liu(刘胜利) First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors 2023 Chin. Phys. B 32 107401
|
[1] Orenstein J and Millis A J 2000 Science 288 468 [2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [3] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [4] Mizuguchi Y, Fujihisa H, Gotoh Y, Suzuki K, Usui H, Kuroki K, Demura S, Takano Y, Izawa H and Miura O 2012 Phys. Rev. B 86 220510 [5] Demura S, Mizuguchi Y, Deguchi C, Okazaki H, Hara H, Watanabe T, Denholme S J, Fujioka M, Ozaki T, Fujihisa H, Gotoh Y, Miura O, Yamaguchi T, Takeya H and Takano Y 2013 J. Phys. Soc. Jpn. 82 033708 [6] Xing J, Li S, Ding X X, Yang H and Wen H H 2012 Phys. Rev. B 86 214518 [7] Jha R, Kumar A, Kumar Singh S and Awana V P S 2013 J. Supercond. Nov. Magn. 26 499 [8] Mizuguchi Y, Demura S, Deguchi K, Takano Y, Fujihisa H, Gotoh Y, Izawa H and Miura O 2012 J. Phys. Soc. Jpn. 81 114725 [9] Yazici D, Huang K, White B D, Chang A H, Friedman A J and Maple M B 2013 Phil. Mag. 93 673 [10] Lei H C, Wang K F, Abeykoon M, Bozin E S and Petrovic C 2013 Inorg. Chem. 52 10685 [11] Goto Y, Miura A, Sakagami R, Kamihara Y, Moriyoshi C, Kuroiwa Y and Mizuguchi Y 2018 J. Phys. Soc. Jpn. 87 074703 [12] Miura A, Oshima T, Maeda K, Mizuguchi Y, Moriyoshi C, Kuroiwa Y, Meng Y, Wen X D, Nagao M, Higuchi M and Tadanaga K 2017 J. Mater. Chem. A 5 14270 [13] Sun Y L, Ablimit A, Zhai H F, Bao J K, Tang Z T, Wang X B, Wang N L, Feng C M and Cao G H 2014 Inorg. Chem. 53 11125 [14] Jha R, Goto Y, Higashinaka R, Matsuda T D, Aoki Y and Mizuguchi Y 2018 J. Phys. Soc. Jpn. 87 083704 [15] Mizuguchi Y, Hijikata Y, Abe T, Moriyoshi C, Kuroiwa Y, Goto Y, Miura A, Lee S, Torii S, Kamiyama T, Lee C H, Ochi M and Kuroki K 2017 Europhys. Lett. 119 26002 [16] Paglione J and Greene R L 2010 Nat. Phys. 6 645 [17] Mizuguchi Y, Demura S, Deguchi K, Takano Y, Fujihisa H, Gotoh Y, Izawa H and Miura O 2012 J. Phys. Soc. Jpn. 81 114725 [18] Tomita T, Ebata M, Soeda H, Takahashi H, Fujihisa H, Gotoh Y, Mizuguchi Y, Izawa H, Miura O, Demura S, Deguchi K and Takano Y 2014 J. Phys. Soc. Jpn. 83 063704 [19] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 Europhys. Lett. 83 27006 [20] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 [21] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [22] Serin B, Reynolds C A and Nesbitt L B 1950 Phys. Rev. 78 813 [23] Hinks D G, Richards D R, Dabrowski B, Marx D T and MiTchell A W 1988 Nature 335 419 [24] Ramirez A P, Kortan A R, Rosseinsky M J, Duclos S J, Mujsce A M, Haddon R C, Murphy D W, Makhija A V, Zahurak S M and Lyons K B 1992 Phys. Rev. Lett. 68 1058 [25] Hinks D G, Claus H and Jorgensen J D 2001 Nature 411 457 [26] Batlogg B, Cava R J, Jayaraman A, Dover R B V, Kourouklis G A, Sunshine S, Murphy D W, Rupp L W, Chen H S, White A, Short K T, Mujsce A M and Rietman E A 1987 Phys. Rev. Lett. 58 2333 [27] Shirage P M, Kihou K, Miyazawa K, Lee C H, Kito H, Eisaki H, Yanagisawa T, Tanaka Y and Iyo A 2009 Phys. Rev. Lett. 103 257003 [28] Jha R and Mizuguchi Y 2020 Appl. Phys. Express 13 093001 [29] Hoshi K, Goto Y and Mizuguchi Y 2018 Phys. Rev. B 97 094509 [30] Yamashita A, Usui H, Hoshi K, Goto Y, Kuroki K and Mizuguchi Y 2021 Sci. Rep. 11 230 [31] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.: Condens. Matter 21 395502 [32] Baroni S, Gironcoli S, Corso A D and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [33] Prandini G, Marrazzo A, Castelli I E, Mounet N, Passaro E and Marzari N 2018 NPJ Comput. Mater. 4 72 [34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [35] Li B, Xing Z W and Huang G Q 2013 Europhys. Lett. 101 47002 [36] Yildirim C 2013 Phys. Rev. B 87 020506 [37] Wan X, Ding H C, Savrasov S Y and Duan C G 2013 Phys. Rev. B 87 115124 [38] Corentin M, Ryosuke A, Takashi K, Siddharth S S and Ryotaro A 2017 Phys. Rev. B 95 180505 [39] Scalapino D, in Superconductivity, edited by Parks R (Dekker, New York, 1969), Vol. 1, p. 449 [40] Allen P and Dynes R 1975 Phys. Rev. B 12 905 [41] Ota Y, Okazaki K, Yamamoto H Q, Yamamoto T, Watanabe S, Chen C T, Nagao M, Watauchi S, Tanaka I, Takano Y and Shin S 2017 Phys. Rev. Lett. 118 167002 [42] Liang Y, Wu X X, Tsai W F and Hu J P 2014 Front. Phys. 9 194 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|