Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 126201    DOI: 10.1088/1674-1056/ace032
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Rolling structure from bilayer nanofilm by mismatch

Jian-Gang Li(李建刚)1,†, Xiao-Pi Geng(耿小丕)2, Qian-Nan Gao(高倩男)2, Jun Zhu(朱俊)3, Zhi-Xiang Gao(高志翔)1, and Hong-Wei Zhu(朱弘伟)1
1 School of Physics and Electronic Science, Shanxi Datong University & Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China;
2 Department of Mathematics and Physics, Hebei Petroleum University of Technology, Chengde 067000, China;
3 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  A continuum theoretical scheme for self-rolling nanotubes from bilayers by mismatch is obtained by considering surface elasticity, surface stress, and symmetry lowering effects. For an ultrathin nanofilm with only several nanometers in thickness, isotropic mismatch, and isotropic surface stress usually induce anisotropic rolling behavior. The isotropic Timoshenko formula should be modified anisotropically to explain the mechanical behavior of anisotropic rolling structure of nanotubes accurately. The nanofilm rolls up in tangential direction while remaining straight in cylindrical direction theoretically. Therefore, in this paper the anisotropic shape of nanotubes is taken into consideration. Along the cylindrical direction, although it maintains straight and its residual strain is uniform, the stress varies in the radial direction due to the Poisson's effect of tangential strain. The results of the current theory applied to Si-Si nanotube, InAs-GaAs nanotube, and InGaAs-Cr nanotube systems show good agreement with the experimental data. Beside the surface elasticity effect and surface stress effect, the symmetry breaking and the anisotropic rolling structure are of great importance in theoretically describing the mechanical behavior of rolling-up of nanotubes.
Keywords:  nanofilms      nanotubes      surface effects      self rolling  
Received:  13 February 2023      Revised:  02 June 2023      Accepted manuscript online:  21 June 2023
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.D- (Elasticity)  
  68.35.Gy (Mechanical properties; surface strains)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No.201901D111316), the National Natural Science Foundation of China (Grant No.11874245), the Teaching Reform and Innovation Pproject of Colleges and Universities in Shanxi Province, China (Grant No.J2021508), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No.2020MS06007).
Corresponding Authors:  Jian-Gang Li     E-mail:  Lijiangang@sxdtdx.edu.cn,Lijiangang1127@163.com

Cite this article: 

Jian-Gang Li(李建刚), Xiao-Pi Geng(耿小丕), Qian-Nan Gao(高倩男), Jun Zhu(朱俊), Zhi-Xiang Gao(高志翔), and Hong-Wei Zhu(朱弘伟) Rolling structure from bilayer nanofilm by mismatch 2023 Chin. Phys. B 32 126201

[1] Kamto C R T, Sendja B T and Mane J M 2019 Chin. Phys. B 28 093101
[2] Zhuo L C, Liang S H and Zhang T 2015 Chin. Phys. Lett. 32 076401
[3] Ekinci K L and Roukes M L 2005 Rev. Sci. Instrum. 76 061101
[4] Ma J N, Feng L, Wang G F, Lin Z F, Zheng H X and Chen H J 2023 Chin. Phys. B 32 014205
[5] Ma X Y, Zhuang C J, Zeng R and Zhou W D 2021 J. Phys. D: Appl. Phys. 54 105101
[6] Chakraverty S and Behera L 2017 Chin. Phys. B 26 074602
[7] Gireesan S, Torres P, Alvarez F X and Bobbert P A 2020 Phys. Rev. B 101 024307
[8] Dong L, Wei G, Cheng T, Tang J, Ye X B, Hong M Q, Hu L L, Yin R, Zhao S Q, Cai G X, Shi Y, Pan B C, Jiang C Z and Ren F 2020 ACS Appl. Mater. Interfaces 12 8886
[9] Li Y N, Wu P, Zhang S P, Pei Y L, Yang J G, Chen S and Wang L 2022 Chin. Phys. B 31 047203
[10] Fernando R M, David P M, Diego A O, Adolfo D C, José F F and José E G 2019 ACS Appl. Mater. Interfaces 11 13921
[11] Yang Y and Deng Z D 2019 Appl. Phys. Rev. 6 011309
[12] Chen S Y, Yang W D, Song J and Guo F L 2019 J. Appl. Phys. 126 044502
[13] Ye J C, Li J, Chen X H, Huang S M and Ou-Yang W 2019 Chin. Phys. B 28 095202
[14] Pan J N, Qin W Y, Deng W Z and Zhou H L 2019 Chin. Phys. B 28 017701
[15] Khan A N, Ermakov A, Sukhorukov G and Hao Y 2019 Appl. Phys. Rev. 6 041301
[16] Peng J Y, Wang J H, Shen B, Li H L and Sun H M 2019 Acta Phys. Sin. 68 090202 (in Chinese)
[17] Chen C, Song P F, Meng F C, Li X, Liu X Y and Song J 2017 Nanotechnology 28 485302
[18] Celebonovic V, Pesic J, Gajic R, Vasic B and Matkovic A 2019 J Appl. Phys. 125 154301
[19] Izumi S, Hara S, Kumagai T and Sakai S 2004 Thin Solid Films 467 253
[20] Zeng Q and Zhang C L 2018 Acta Phys. Sin. 67 264101 (in Chinese)
[21] Sadeghian H, Yang C K, Goosen J F L, Bossche A, Staufer U, French P J and Keulen F 2010 J Micromech. Microeng. 20 064012
[22] Wang L, Zhang R R and Fang W 2019 Acta Phys. Sin. 68 166101 (in Chinese)
[23] Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press)
[24] Gurtin M E and Murdoch A I 1975 Ration. Mech. Anal. 57 291
[25] Miller R E and Shenoy V B 2000 Nanotechnology 11 139
[26] Chen C Q, Shi Y, Zhang Y S, Zhu J and Yan Y J 2006 Phys. Rev. Lett. 96 075505
[27] Stan G, Ciobanu C V, Parthangal P M and Cook R F 2007 Nano Lett. 7 3691
[28] Li J G, Wang A X, Narsu B, Yun G H, Gao Z X and Liu D P 2019 Appl. Phys. A 125 434
[29] Li J G, Han M Q, Li L F, Gao Z X and Zhang H L 2019 Sci. Rep. 9 16959
[30] Yao H Y, Yun G H, Narsu B and Li J G 2012 J. Appl. Phys. 111 083506
[31] Li J G, Narsu B, Yun G H and Yao H Y 2015 J. Phys. D: Appl. Phys. 48 285301
[32] Li J G, Narsu B, Yun G H, Wang A X and Gao Z X 2018 Appl. Phys. A 124 813
[33] Schmidt O G and Eberl K 2001 Nature 410 168
[34] Zhang Y M and Ionov L 2019 Eur. Polym. J 119 32
[35] Xu C H, Wu X, Huang G S and Mei Y F 2019 Adv. Mater. Technol. 4 1800486
[36] Chen Z, Huang GS, Trase I, Han X M and Mei Y F 2016 Phys. Rev. Appl. 5 017001
[37] Stoney G G 1909 Proc. R. Soc. Lond. A 82 172
[38] Timoshenko S 1925 J Opt. Soc. Am. 11 233
[39] Marcus P M 1996 Phys. Rev. B 53 7460
[40] Huang M H, Rugheimer P, Lagally M G and Liu F 2005 Phys. Rev. B 72 085450
[41] Zang J and Liu F 2008 Appl. Phys. Lett. 92 021905
[42] Grundmann M 2003 Appl. Phys. Lett. 83 2444
[43] Songmuang R, Deneke C and Schmidt O G 2006 Appl. Phys. Lett. 89 223109
[44] Deneke C, Müller C, Jin-Phillipp N Y and Schmidt O G 2002 Semicond. Sci. Technol. 17 1278
[45] Malachias A, Deneke C, Krause B, Mocuta C, Kiravittaya S, Metzger T H and Schmidt O G 2009 Phys. Rev. B 79 035301
[46] Lacheisserie E T 1995 Phys. Rev. B 51 15925
[47] Barcelos I D, Marçal L A B, Deneke Ch, Moura L G, Lacerdaa R G and Malachias A 2016 RSC Adv. 6 103707
[48] Nikishkov G P 2003 J. Appl. Phys. 94 5333
[49] Cammarata R C 1994 Prog. Surf. Sci. 46 1
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[4] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[7] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[8] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[9] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[10] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[11] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[12] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[13] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[14] Domain wall dynamics in magnetic nanotubes driven by an external magnetic field
Zai-Dong Li(李再东), Yue-Chuan Hu(胡月川), Peng-Bin He(贺鹏斌), Lin-Lin Sun(孙琳琳). Chin. Phys. B, 2018, 27(7): 077505.
[15] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
No Suggested Reading articles found!