CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Rolling structure from bilayer nanofilm by mismatch |
Jian-Gang Li(李建刚)1,†, Xiao-Pi Geng(耿小丕)2, Qian-Nan Gao(高倩男)2, Jun Zhu(朱俊)3, Zhi-Xiang Gao(高志翔)1, and Hong-Wei Zhu(朱弘伟)1 |
1 School of Physics and Electronic Science, Shanxi Datong University & Shanxi Province Key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong 037009, China; 2 Department of Mathematics and Physics, Hebei Petroleum University of Technology, Chengde 067000, China; 3 School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China |
|
|
Abstract A continuum theoretical scheme for self-rolling nanotubes from bilayers by mismatch is obtained by considering surface elasticity, surface stress, and symmetry lowering effects. For an ultrathin nanofilm with only several nanometers in thickness, isotropic mismatch, and isotropic surface stress usually induce anisotropic rolling behavior. The isotropic Timoshenko formula should be modified anisotropically to explain the mechanical behavior of anisotropic rolling structure of nanotubes accurately. The nanofilm rolls up in tangential direction while remaining straight in cylindrical direction theoretically. Therefore, in this paper the anisotropic shape of nanotubes is taken into consideration. Along the cylindrical direction, although it maintains straight and its residual strain is uniform, the stress varies in the radial direction due to the Poisson's effect of tangential strain. The results of the current theory applied to Si-Si nanotube, InAs-GaAs nanotube, and InGaAs-Cr nanotube systems show good agreement with the experimental data. Beside the surface elasticity effect and surface stress effect, the symmetry breaking and the anisotropic rolling structure are of great importance in theoretically describing the mechanical behavior of rolling-up of nanotubes.
|
Received: 13 February 2023
Revised: 02 June 2023
Accepted manuscript online: 21 June 2023
|
PACS:
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.20.D-
|
(Elasticity)
|
|
68.35.Gy
|
(Mechanical properties; surface strains)
|
|
81.40.Jj
|
(Elasticity and anelasticity, stress-strain relations)
|
|
Fund: Project supported by the Natural Science Foundation of Shanxi Province, China (Grant No.201901D111316), the National Natural Science Foundation of China (Grant No.11874245), the Teaching Reform and Innovation Pproject of Colleges and Universities in Shanxi Province, China (Grant No.J2021508), and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No.2020MS06007). |
Corresponding Authors:
Jian-Gang Li
E-mail: Lijiangang@sxdtdx.edu.cn,Lijiangang1127@163.com
|
Cite this article:
Jian-Gang Li(李建刚), Xiao-Pi Geng(耿小丕), Qian-Nan Gao(高倩男), Jun Zhu(朱俊), Zhi-Xiang Gao(高志翔), and Hong-Wei Zhu(朱弘伟) Rolling structure from bilayer nanofilm by mismatch 2023 Chin. Phys. B 32 126201
|
[1] Kamto C R T, Sendja B T and Mane J M 2019 Chin. Phys. B 28 093101 [2] Zhuo L C, Liang S H and Zhang T 2015 Chin. Phys. Lett. 32 076401 [3] Ekinci K L and Roukes M L 2005 Rev. Sci. Instrum. 76 061101 [4] Ma J N, Feng L, Wang G F, Lin Z F, Zheng H X and Chen H J 2023 Chin. Phys. B 32 014205 [5] Ma X Y, Zhuang C J, Zeng R and Zhou W D 2021 J. Phys. D: Appl. Phys. 54 105101 [6] Chakraverty S and Behera L 2017 Chin. Phys. B 26 074602 [7] Gireesan S, Torres P, Alvarez F X and Bobbert P A 2020 Phys. Rev. B 101 024307 [8] Dong L, Wei G, Cheng T, Tang J, Ye X B, Hong M Q, Hu L L, Yin R, Zhao S Q, Cai G X, Shi Y, Pan B C, Jiang C Z and Ren F 2020 ACS Appl. Mater. Interfaces 12 8886 [9] Li Y N, Wu P, Zhang S P, Pei Y L, Yang J G, Chen S and Wang L 2022 Chin. Phys. B 31 047203 [10] Fernando R M, David P M, Diego A O, Adolfo D C, José F F and José E G 2019 ACS Appl. Mater. Interfaces 11 13921 [11] Yang Y and Deng Z D 2019 Appl. Phys. Rev. 6 011309 [12] Chen S Y, Yang W D, Song J and Guo F L 2019 J. Appl. Phys. 126 044502 [13] Ye J C, Li J, Chen X H, Huang S M and Ou-Yang W 2019 Chin. Phys. B 28 095202 [14] Pan J N, Qin W Y, Deng W Z and Zhou H L 2019 Chin. Phys. B 28 017701 [15] Khan A N, Ermakov A, Sukhorukov G and Hao Y 2019 Appl. Phys. Rev. 6 041301 [16] Peng J Y, Wang J H, Shen B, Li H L and Sun H M 2019 Acta Phys. Sin. 68 090202 (in Chinese) [17] Chen C, Song P F, Meng F C, Li X, Liu X Y and Song J 2017 Nanotechnology 28 485302 [18] Celebonovic V, Pesic J, Gajic R, Vasic B and Matkovic A 2019 J Appl. Phys. 125 154301 [19] Izumi S, Hara S, Kumagai T and Sakai S 2004 Thin Solid Films 467 253 [20] Zeng Q and Zhang C L 2018 Acta Phys. Sin. 67 264101 (in Chinese) [21] Sadeghian H, Yang C K, Goosen J F L, Bossche A, Staufer U, French P J and Keulen F 2010 J Micromech. Microeng. 20 064012 [22] Wang L, Zhang R R and Fang W 2019 Acta Phys. Sin. 68 166101 (in Chinese) [23] Zhao Y P 2014 Nano and Mesoscopic Mechanics (Beijing: Science Press) [24] Gurtin M E and Murdoch A I 1975 Ration. Mech. Anal. 57 291 [25] Miller R E and Shenoy V B 2000 Nanotechnology 11 139 [26] Chen C Q, Shi Y, Zhang Y S, Zhu J and Yan Y J 2006 Phys. Rev. Lett. 96 075505 [27] Stan G, Ciobanu C V, Parthangal P M and Cook R F 2007 Nano Lett. 7 3691 [28] Li J G, Wang A X, Narsu B, Yun G H, Gao Z X and Liu D P 2019 Appl. Phys. A 125 434 [29] Li J G, Han M Q, Li L F, Gao Z X and Zhang H L 2019 Sci. Rep. 9 16959 [30] Yao H Y, Yun G H, Narsu B and Li J G 2012 J. Appl. Phys. 111 083506 [31] Li J G, Narsu B, Yun G H and Yao H Y 2015 J. Phys. D: Appl. Phys. 48 285301 [32] Li J G, Narsu B, Yun G H, Wang A X and Gao Z X 2018 Appl. Phys. A 124 813 [33] Schmidt O G and Eberl K 2001 Nature 410 168 [34] Zhang Y M and Ionov L 2019 Eur. Polym. J 119 32 [35] Xu C H, Wu X, Huang G S and Mei Y F 2019 Adv. Mater. Technol. 4 1800486 [36] Chen Z, Huang GS, Trase I, Han X M and Mei Y F 2016 Phys. Rev. Appl. 5 017001 [37] Stoney G G 1909 Proc. R. Soc. Lond. A 82 172 [38] Timoshenko S 1925 J Opt. Soc. Am. 11 233 [39] Marcus P M 1996 Phys. Rev. B 53 7460 [40] Huang M H, Rugheimer P, Lagally M G and Liu F 2005 Phys. Rev. B 72 085450 [41] Zang J and Liu F 2008 Appl. Phys. Lett. 92 021905 [42] Grundmann M 2003 Appl. Phys. Lett. 83 2444 [43] Songmuang R, Deneke C and Schmidt O G 2006 Appl. Phys. Lett. 89 223109 [44] Deneke C, Müller C, Jin-Phillipp N Y and Schmidt O G 2002 Semicond. Sci. Technol. 17 1278 [45] Malachias A, Deneke C, Krause B, Mocuta C, Kiravittaya S, Metzger T H and Schmidt O G 2009 Phys. Rev. B 79 035301 [46] Lacheisserie E T 1995 Phys. Rev. B 51 15925 [47] Barcelos I D, Marçal L A B, Deneke Ch, Moura L G, Lacerdaa R G and Malachias A 2016 RSC Adv. 6 103707 [48] Nikishkov G P 2003 J. Appl. Phys. 94 5333 [49] Cammarata R C 1994 Prog. Surf. Sci. 46 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|