CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic and magnetotransport properties of layered TaCoTe2 single crystals |
Ming Mei(梅明)1,2,†, Zheng Chen(陈正)1,†, Yong Nie(聂勇)1,2, Yuanyuan Wang(王园园)1,2, Xiangde Zhu(朱相德)1,‡, Wei Ning(宁伟)1,§, and Mingliang Tian(田明亮)1,3 |
1 Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China; 2 Department of Physics, University of Science and Technology of China, Hefei 230031, China; 3 School of Physics, Anhui University, Hefei 230601, China |
|
|
Abstract We present the synthesis of TaCoTe2 single crystals and a systematic investigation of the physical properties of bulk crystals and thin flakes. The crystal shows a semiconducting behavior with temperature decreasing from room temperature and turns to a metallic behavior below 38 K. When the magnetic field is applied, the temperature-dependent resistivity curves show an upturn below 10 K. Furthermore, we find that the TaCoTe2 single crystal can be easily exfoliated from the bulk crystal by the micromechanical exfoliation method. Our measurements suggest that the nanoflakes have properties similar to those of the bulk crystal when the thickness is lowered to 18 nm.
|
Received: 13 March 2023
Revised: 28 April 2023
Accepted manuscript online: 28 April 2023
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
68.65.-k
|
(Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2021YFA1600201), the National Natural Science Foundation of China (Grant Nos. U19A2093, U2032214, and U2032163), Collaborative Innovation Program of Hefei Science Center, CAS (Grant No.2019HSC-CIP 001), Youth Innovation Promotion Association of CAS (Grant No.2021117), the HFIPS Director's Fund (Grant No.YZJJQY202304), and the CASHIPS Director's Fund (Grant No.E26MMG71131). A portion of this work was supported by the High Magnetic Field Laboratory of Anhui Province. |
Corresponding Authors:
Xiangde Zhu, Wei Ning
E-mail: xdzhu@hmfl.ac.cn;ningwei@hmfl.ac.cn
|
Cite this article:
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮) Magnetic and magnetotransport properties of layered TaCoTe2 single crystals 2023 Chin. Phys. B 32 127303
|
[1] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B and Choi J Y 2012 Nat. Commun. 3 1011 [2] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815 [3] Wang H, Xu M and Zheng R 2020 Acta Phys. Sin. 69 017301 (in Chinese) [100] Qin M S, Zhu P F, Ye X G, Xu W Z, Song Z H, Liang J, Liu K and Liao Z M 2021 Chin. Phys. Lett. 38 017301 [4] Zeng H and Cui X 2015 Chem. Soc. Rev. 44 2629 [5] Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J and Singh A 2019 Nature 567 71 [6] Wang C, Liu J and Zhang H 2019 Acta Phys. Sin. 68 188101 (in Chinese) [7] Cheng R, Jiang S, Chen Y, Liu Y, Weiss N, Cheng H C, Wu H, Huang Y and Duan X 2014 Nat. Commun. 5 1 [8] Myny K 2018 Nat. Electron. 1 30 [9] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270 [10] Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P and Fernández-Rossier J 2018 Science 360 1218 [11] Yu X Y, Feng H L, Gu G X, Liu Y H, Li Z L, Xu T S and Li Y Q 2019 Acta Phys. Sin. 68 247201 (in Chinese) [101] Hao Y, Gu Y, Gu Y, Feng E, Cao H, Chi S, Wu H and Zhao J 2021 Chin. Phys. Lett. 38 096101 [12] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201 [13] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [14] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J and Yu P 2017 Nat. Commun. 8 394 [15] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [16] Fei Z, Huang B, Malinowski P, Wang W, Song T, Sanchez J, Yao W, Xiao D, Zhu X, May A F, Wu W, Cobden D H, Chu J H and Xu X 2018 Nat. Mater. 17 778 [17] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [18] Hu J, Liu X, Yue C L, Liu J Y, Zhu H W, He J B, Wei J, Mao Z Q, Antipina L Y, Popov Z I, Sorokin P B, Liu T J, Adams P W, Radmanesh S M A, Spinu L, Ji H and Natelson D 2015 Nat. Phys. 11 471 [19] Akinwande D, Petrone N and Hone J 2014 Nat. Commun. 5 5678 [20] Lin Z, Liu Y, Halim U, Ding M, Liu Y, Wang Y, Jia C, Chen P, Duan X and Wang C 2018 Nature 562 254 [21] Mak K F and Shan J 2016 Nat. Photonics 10 216 [22] Baugher B W, Churchill H O, Yang Y and Jarillo-Herrero P 2014 Nat. Nanotechnol. 9 262 [23] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K and McGuire M A 2017 Sci. Adv. 3 e1603113 [24] Jiang S, Li L, Wang Z, Shan J and Mak K F 2019 Nat. Electron. 2 159 [25] Lin X, Yang W, Wang K L and Zhao W 2019 Nat. Electron. 2 274 [102] Chen Y, Liu R, Chen Y, Yuan X, Ning J, Zhang C, Chen L, Wang P, He L, Zhang R, Xu Y and Wang X 2021 Chin. Phys. Lett. 38 017101 [26] Li S, Liu Y, Yu Z M, Jiao Y, Guan S, Sheng X L, Yao Y and Yang S A 2019 Phys. Rev. B 100 205102 [27] Mazzola F, Ghosh B, Fujii J, Acharya G, Mondal D, Rossi G, Bansil A, Farias D, Hu J, Agarwal A, Politano A and Vobornik I 2023 Nano Lett. 23 902 [28] Li J, McCulley F, McDonnell S L, Masciocchi N, Proserpio D M and Sironi A 1993 Inorg. Chem. 32 4829 [29] Wang Y, Xie C, Li J, Du Z, Cao L, Han Y, Zu L, Zhang H, Zhu H, Zhang X, Xiong Y and Zhao W 2021 Phys. Rev. B 103 174418 [30] Ning W, Du H, Kong F, Yang J, Han Y, Tian M and Zhang Y 2013 Sci. Rep. 3 1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|