Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010303    DOI: 10.1088/1674-1056/ad0cd1
RAPID COMMUNICATION Prev   Next  

Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms

Chao Zeng(曾超)1,2,3, Yue-Ran Shi(石悦然)4,5, Yi-Yi Mao(毛一屹)1,2,3, Fei-Fei Wu(武菲菲)1,2,3, Yan-Jun Xie(谢岩骏)1,2,3, Tao Yuan(苑涛)1,2,3, Han-Ning Dai(戴汉宁)1,2,3,†, and Yu-Ao Chen(陈宇翱)1,2,3
1 Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
2 Shanghai Research Center for Quantum Sciences and CAS Center for Excellence Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China;
4 Department of Physics, Renmin University of China, Beijing 100872, China;
5 Key Laboratory of Quantum State Constructuion and Manipulation(Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  We investigated the one-dimensional diamond ladder in the momentum lattice platform. By inducing multiple two- and four-photon Bragg scatterings among specific momentum states, we achieved a flat band system based on the diamond model, precisely controlling the coupling strength and phase between individual lattice sites. Utilizing two lattice sites couplings, we generated a compact localized state associated with the flat band, which remained localized throughout the entire time evolution. We successfully realized the continuous shift of flat bands by adjusting the corresponding nearest neighbor hopping strength, enabling us to observe the complete localization process. This opens avenues for further exploration of more complex properties within flat-band systems, including investigating the robustness of flat-band localized states in disordered flat-band systems and exploring many-body localization in interacting flat-band systems.
Keywords:  diamond lattice      flat band      momentum lattice      localized state  
Received:  06 November 2023      Revised:  13 November 2023      Accepted manuscript online:  16 November 2023
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12074367), Anhui Initiative in Quantum Information Technologies, the National Key Research and Development Program of China (Grant No. 2020YFA0309804), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB35020200), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302002), and New Cornerstone Science Foundation.
Corresponding Authors:  Han-Ning Dai     E-mail:  daihan@ustc.edu.cn

Cite this article: 

Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱) Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms 2024 Chin. Phys. B 33 010303

[1] Lagendijk A, van Tiggelen B and Wiersma D 2009 Phys. Today 62 24
[2] Anderson P W 1958 Phys. Rev. 109 1492
[3] Basko D, Aleiner I and Altshuler B 2006 Ann. Phys. 321 1126
[4] Nandkishore R and Huse D 2015 Annu. Rev. Conden. Matt. Phys. 6 15
[5] Derzhko O and Richter J 2006 Eur. Phys. J. B 52 23
[6] Derzhko O, Richter J, Honecker A, Maksymenko M and Moessner R 2010 Phys. Rev. B 81 014421
[7] Niţǎ M, Ostahie B and Aldea A 2013 Phys. Rev. B 87 125428
[8] Leykam D, Andreanov A and Flach S 2018 Adv. Phys. X 3 1473052
[9] Leykam D and Flach S 2018 APL Photonics 3 070901
[10] Leykam D, Flach S, Bahat-Treidel O and Desyatnikov A 2013 Phys. Rev. B 88 224203
[11] Leykam D, Bodyfelt J D, Desyatnikov A S and Flach S 2017 Eur. Phys. J. B 90 1
[12] Goda M, Nishino S and Matsuda H 2006 Phys. Rev. Lett. 96 126401
[13] Li H, Dong Z, Longhi S, Liang Q, Xie D and Yan B 2022 Phys. Rev. Lett. 129 220403
[14] Jo G B, Guzman J, Thomas C, Hosur P, Vishwanath A and Stamper-Kurn D 2012 Phys. Rev. Lett. 108 045305
[15] Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S and Takahashi Y 2015 Sci. Adv. 1 e1500854
[16] Luo X and Zhang C 2021 Phys. Rev. Lett. 126 103201
[17] Baboux F, Ge L, Jacqmin T, Biondi M, Galopin E, Lemaître A, Gratiet L L, Sagnes I, Schmidt S, Türeci H E, Amo A and Bloch J 2016 Phys. Rev. Lett. 116 066402
[18] Harder T H, Egorov O A, Beierlein J, Gagel P, Michl J, Emmerling M, Schneider C, Peschel U, Höfling S and Klembt S 2020 Phys. Rev. B 102 121302
[19] Vicencio R A, Cantillano C, Morales-Inostroza L, Real B, Mejía-Cortés C, Weimann S, Szameit A and Molina M I 2015 2015 Phys. Rev. Lett. 114 245503
[20] Mukherjee S, Spracklen A, Choudhury D, Goldman N, Öhberg P, Andersson E and Thomson R R 2015 Phys. Rev. Lett. 114 245504
[21] Mukherjee S and Thomson R R 2015 Opt. Lett. 40 5443
[22] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907
[23] Xia S, Ramachandran A, Xia S, Li D, Liu X, Tang L, Hu Y, Song D, Xu J, Leykam D, Flach S and Chen Z 2018 Phys. Rev. Lett. 121 263902
[24] Gadway B 2015 Phys. Rev. A 92 043606
[25] An F A, Meier E J and Gadway B 2018 Phys. Rev. X 8 031045
[26] Meier E J, An F A, Dauphin A, Maffei M, Massignan P, Hughes T L and Gadway B 2018 Science 362 929
[27] Meier E J, Ngan K, Sels D and Gadway B 2020 Phys. Rev. Research 2 043201
[28] An F A, Sundar B, Hou J, Luo X, Meier E J, Zhang C, Hazzard K R A and Gadway B 2021 Phys. Rev. Lett. 127 130401
[29] Liang Q, Xie D, Dong Z, Li H, Li H, Gadway B, Yi W and Yan B 2022 Phys. Rev. Lett. 129 070401
[30] Longhi S 2021 Opt. Lett. 46 2872
[31] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[32] Vidal J, Mosseri R and Douçot B 1998 Phys. Rev. Lett. 81 5888
[33] Jiao Z, Longhi S, Wang X, Gao J, Zhou W, Wang Y, Fu Y, Wang L, Ren R, Qiao L and Jin X 2021 Phys. Rev. Lett. 127 147401
[1] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[2] Tunable caging of excitation in decorated Lieb-ladder geometry with long-range connectivity
Atanu Nandy. Chin. Phys. B, 2023, 32(12): 127201.
[3] Wave function collapses and 1/n energy spectrum induced by a Coulomb potential in a one-dimensional flat band system
Yi-Cai Zhang(张义财). Chin. Phys. B, 2022, 31(5): 050311.
[4] Intrinsic V vacancy and large magnetoresistance in V1-δSb2 single crystal
Yong Zhang(张勇), Xinliang Huang(黄新亮), Jinglei Zhang(张警蕾), Wenshuai Gao(高文帅), Xiangde Zhu(朱相德), and Li Pi(皮雳). Chin. Phys. B, 2022, 31(3): 037102.
[5] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[6] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[7] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[8] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[9] Surface Majorana flat bands in j=3/2 superconductors with singlet-quintet mixing
Jiabin Yu(于家斌), Chao-Xing Liu(刘朝星). Chin. Phys. B, 2020, 29(1): 017402.
[10] Collapses-revivals phenomena induced by weak magnetic flux in diamond chain
Na-Na Chang(常娜娜), Wen-Quan Jing(景文泉), Yu Zhang(张钰), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2020, 29(1): 010306.
[11] Unconventional chiral d-wave superconducting state in strained graphene
Feng Xu(徐峰), Lei Zhang(张磊). Chin. Phys. B, 2019, 28(11): 117403.
[12] Tunneling dynamics of bosons in the diamond lattice chain
Na-Na Chang(常娜娜), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(10): 105203.
[13] Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals
Yi-Xin Zong(宗易昕), Jian-Bai Xia(夏建白), Hai-Bin Wu(武海斌). Chin. Phys. B, 2017, 26(4): 044208.
[14] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[15] Curved surface effect and emission on silicon nanostructures
Huang Wei-Qi (黄伟其), Yin Jun (尹君), Zhou Nian-Jie (周年杰), Huang Zhong-Mei (黄忠梅), Miao Xin-Jian (苗信建), Cheng Han-Qiong (陈汉琼), Su Qin (苏琴), Liu Shi-Rong (刘世荣), Qin Chao-Jian (秦朝建). Chin. Phys. B, 2013, 22(10): 104204.
No Suggested Reading articles found!